
1

EXA2PRO Runtime System : StarPU

Samuel Thibault

INRIA STORM Team

 https://exa2pro.eu

17

Introduction
Toward heterogeneous multi-core architectures

• Multicore is here
• Hierarchical architectures
• Manycore
• Heterogeneous systems

• Architecture specialization
• Now

– Accelerators (GPGPUs,
FPGAs)

– Coprocessors (Xeon Phi)
– All of the above

• In the near Future
– Many simple cores
– A few full-featured cores

Mixed Large
and

Small Cores

 https://exa2pro.eu

18

Introduction
Toward heterogeneous multi-core clusters

• Multicore is here
• Hierarchical architectures
• Manycore
• Heterogeneous systems

• Clusters thereof
• High-speed network
• Network topology
• Towards exascale

 https://exa2pro.eu

33

How to program these architectures?

• Multicore programming
• pthreads, OpenMP, TBB, ...

M.M.

CPU

CPU

CPU

CPU

Multicore

OpenMP

TBB
MPI

Cilk

 https://exa2pro.eu

39

How to program these architectures?

• Multicore programming
• pthreads, OpenMP, TBB, ...

• Accelerator programming
• CUDA, OpenCL, FPGA ?
• OpenMP 5.0?
• (Often) Pure offloading model

M.M.

CPU

CPU

CPU

CPU M.*PU

M.*PU

Accelerators

OpenCL
CUDA

FPGA

 https://exa2pro.eu

41

How to program these architectures?

• Multicore programming
• pthreads, OpenMP, TBB, ...

• Accelerator programming
• CUDA, OpenCL, FPGA ?
• OpenMP 5.0?
• (Often) Pure offloading model

• Network support
• MPI / PGAS

M.M.

CPU

CPU

CPU

CPU M.*PU

M.*PU

N.N.

MPI
 PGAS

Network

 https://exa2pro.eu

42

MPI MPI
 PGAS

How to program these architectures?

• Multicore programming
• pthreads, OpenMP, TBB, ...

• Accelerator programming
• CUDA, OpenCL, FPGA ?
• OpenMP 5.0?
• (Often) Pure offloading model

• Network support
• MPI / PGAS

• Hybrid models?
• Take advantage of all resources ☺
• Complex interactions and distribution

☹ M.M.

CPU

CPU

CPU

CPU M.*PU

M.*PU

Multicore

OpenMP

TBB

Accelerators

Cilk ?

OpenCL
CUDA

N.N.

?

Network

FPGA

 https://exa2pro.eu

43

Task graphs

• Well-studied for scheduling parallelism (since 60’s!)

• Departs from usual sequential programming

Really ?

 https://exa2pro.eu

75

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

76

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

77

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

78

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

79

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

80

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

81

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

82

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

83

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

84

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

85

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

86

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

87

Task management
Implicit task dependencies

• Right-Looking Cholesky decomposition (from PLASMA)

 https://exa2pro.eu

89

Write your application as a task graph

Even if using a sequential-looking source code

➔ Portable performance

Sequential Task Flow (STF)

• Algorithm remains the same on the long term

• Can debug the sequential version.

• Only kernels need to be rewritten
• BLAS libraries, multi-target compilers

• Runtime will handle parallel execution

 https://exa2pro.eu

90

Task-based programming

• Needs code restructuring
• Split computation into tasks

– BLAS, typically
– Supposed to have “stable” performance

• Constraining
• No global variables

– Mandatory for GPUs

• Actually… functional programming

So a good move, in the end ☺

• Have to accept constraints and losing control

Just like we did when moving from assembly to high-level languages

 https://exa2pro.eu

91

EXA2PRO stack

 https://exa2pro.eu

104

Overview of StarPU

 https://exa2pro.eu

105

Overview of StarPU

Rationale

Task scheduling
• Dynamic
• On all kinds of PU

– General purpose
– Accelerators/specialized

Memory transfer
• Eliminate redundant

transfers
• Software VSM (Virtual

Shared Memory)

A = A+B

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A

 https://exa2pro.eu

106

• “do dynamically what
can’t be done statically
anymore”

• Compilers and libraries
generate (graphs of) tasks

• Additional information is
welcome!

• StarPU provides
• Task scheduling
• Memory management

The need for runtime systems

The StarPU runtime system

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

GPU …

 https://exa2pro.eu

107

StarPU

Drivers (CUDA, OpenCL)

CPU

• StarPU provides a Virtual
Shared Memory (VSM)
subsystem (aka DSM)

• Replication
• Consistency
• Single writer

– Or reduction, ...

• Input & ouput of tasks =
reference to VSM data GPU …

Data management

Parallel
Compilers

HPC Applications

Parallel
Libraries

 https://exa2pro.eu

108

StarPU

Drivers (CUDA, OpenCL)

CPU

• Tasks =
• Data input & output

– Reference to VSM data
• Multiple implementations

– E.g. CUDA + CPU
implementation

• Non-preemptible
• Dependencies with other

tasks

• StarPU provides an Open
Scheduling platform

• Scheduling algorithm =
plug-ins

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)

Parallel
Compilers

HPC Applications

Parallel
Libraries

 https://exa2pro.eu

109

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

• Who generates the code ?
• StarPU Task ~= function pointers
• StarPU doesn't generate code

• Libraries era
• PLASMA + MAGMA
• FFTW + CUFFT…
• Variants management

• Rely on compilers

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)

 https://exa2pro.eu

110

The StarPU runtime system

High-level data management
library

Execution model

Specific drivers

CPUs

Scheduling engine

HPC Applications

Mastering CPUs, GPUs, SPUs … *PUs → StarPU

GPUs SPUs ...

 https://exa2pro.eu

111

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A B

BA

 https://exa2pro.eu

112

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

Submit task « A += B »

A+= B

A B

BA

 https://exa2pro.eu

113

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

Schedule task

A+= B

A B

BA

 https://exa2pro.eu

114

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

B B

BA

A

Fetch data

A+= B

 https://exa2pro.eu

115

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

B B

BA

A A

Fetch data

A+= B

 https://exa2pro.eu

116

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

B B

BA

A A

Fetch data

A+= B

 https://exa2pro.eu

117

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

B B

BA

A A

Offload computation

A+= B

 https://exa2pro.eu

118

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

B B

BA

A A

Notify termination

 https://exa2pro.eu

120

• History
• Started about 9 years ago

– PhD Thesis of Cédric Augonnet
• StarPU main core ≈ 70k lines of code
• Written in C

• Open Source
• Released under LGPL
• Sources freely available

– git repository and nightly tarballs
– See https://starpu.gitlabpages.inria.fr/

• Open to external contributors

• [HPPC'08]

• [Europar'09] – [CCPE'11],... >1500 citations

The StarPU runtime system
Development context

 https://exa2pro.eu

123

Task-based programming actually makes things easier!

• QR-Mumps (sparse linear algebra)
• Non-task version: only 1D decomposition
• Task version: 2D decomposition, flurry of parallelism

– With seamless memory control

• H-Matrices (compressed linear algebra, AirBus)
• Out-of-core support

– Could run cases unachievable before
– e.g. 1600 GB matrix with 256 GB memory

• Shipped to AirBus customers

• Implemented CFD, FMM, CG, stencils, …

The StarPU runtime system
Success stories

 https://exa2pro.eu

124

• Supported architectures
• Multicore CPUs (x86, PPC, ...)
• NVIDIA GPUs
• OpenCL devices (eg. AMD cards)
• Intel Xeon Phi (MIC)
• FPGA (ongoing)
• Intel SCC, Kalray MPPA, Cell (decommissioned)

• Supported Operating Systems
• Linux
• Mac OS
• Windows

The StarPU runtime system
Supported platforms

 https://exa2pro.eu

160

Task-based support

Then all of this comes “for free” :

• Task/data scheduling
• Pipelining
• Load balancing
• GPU memory limitation management
• Data prefetching

• Performance bounds

• Distributed execution through MPI

• High-level performance analysis

• Out-of-core : optimized swapping to disk

• Debugging sequential execution

• Reproducible performance simulation

 https://exa2pro.eu

165

Task Scheduling

 https://exa2pro.eu

166

Why do we need task scheduling ?
Blocked Matrix multiplication

2 Xeon cores

Quadro FX5800

Quadro FX4600

 Things can go (really) wrong even on trivial problems !
• Static mapping ?

– Not portable, too hard for real-life problems
• Need Dynamic Task Scheduling

– Performance models

 https://exa2pro.eu

169

Runtime-based task scheduling

Scheduler

Push

Pop Pop

When a task is submitted, it first
goes into a pool of “frozen tasks”
until all dependencies are met

Then, the task is “pushed” to the
scheduler

Idle processing units poll for work
(“pop”)

Various scheduling policies, can
even be user-defined CPU

workers
GPU

workers

 https://exa2pro.eu

170

Pop

When a task is submitted, it first
goes into a pool of “frozen tasks”
until all dependencies are met

Then, the task is “pushed” to the
scheduler

Idle processing units poll for work
(“pop”)

Various scheduling policies, can
even be user-defined

Push

CPU
workers

GPU
workers

Runtime-based task scheduling

 https://exa2pro.eu

171

?

When a task is submitted, it first
goes into a pool of “frozen tasks”
until all dependencies are met

Then, the task is “pushed” to the
scheduler

Idle processing units poll for work
(“pop”)

Various scheduling policies, can
even be user-defined CPU

workers
GPU

workers

Push

Runtime-based task scheduling

 https://exa2pro.eu

172

?

When a task is submitted, it first
goes into a pool of “frozen tasks”
until all dependencies are met

Then, the task is “pushed” to the
scheduler

Idle processing units poll for work
(“pop”)

Various scheduling policies, can
even be user-defined CPU

workers
GPU

workers

Push

Runtime-based task scheduling

 https://exa2pro.eu

183

Prediction-based scheduling
Load balancing

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

• Task completion time
estimation

• History-based
• User-defined cost

function
• Parametric cost model
• [HPPC'09]

• Can be used to
implement scheduling

• E.g. Heterogeneous
Earliest Finish Time

 https://exa2pro.eu

184

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

Prediction-based scheduling
Load balancing

• Task completion time
estimation

• History-based
• User-defined cost

function
• Parametric cost model
• [HPPC'09]

• Can be used to
implement scheduling

• E.g. Heterogeneous
Earliest Finish Time

 https://exa2pro.eu

185

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

Prediction-based scheduling
Load balancing

• Task completion time
estimation

• History-based
• User-defined cost

function
• Parametric cost model
• [HPPC'09]

• Can be used to
implement scheduling

• E.g. Heterogeneous
Earliest Finish Time

 https://exa2pro.eu

186

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

Prediction-based scheduling
Load balancing

• Task completion time
estimation

• History-based
• User-defined cost

function
• Parametric cost model
• [HPPC'09]

• Can be used to
implement scheduling

• E.g. Heterogeneous
Earliest Finish Time

 https://exa2pro.eu

187

Predicting data transfer overhead
Motivations

• Hybrid platforms
• Multicore CPUs and GPUs
• PCI-e bus is a precious ressource

• Data locality vs. Load balancing
• Cannot avoid all data transfers
• Minimize them

• StarPU keeps track of
• data replicates
• on-going data movements

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A

 https://exa2pro.eu

188

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

• Data transfer time
• Sampling based on off-

line calibration

• Can be used to
• Better estimate overall

exec time
• Minimize data

movements

• Further
• Power overhead

• dmda [ICPADS'10]

Prediction-based scheduling
Load balancing

 https://exa2pro.eu

248

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

 https://exa2pro.eu

249

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

MAGMA

 https://exa2pro.eu

250

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

+12 CPUs
~200GFlops

vs measured
~150Gflops !

Thanks to
heterogeneity

 https://exa2pro.eu

251

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

+12 CPUs
~200GFlops

vs measured
~150Gflops !

Thanks to
heterogeneity

MAGMA

 https://exa2pro.eu

252

• « Super-Linear » efficiency in QR?
• Kernel efficiency

– sgeqrt
– CPU: 9 Gflops GPU: 30 Gflops (Speedup : ~3)

– stsqrt
– CPU: 12Gflops GPU: 37 Gflops (Speedup: ~3)

– somqr
– CPU: 8.5 Gflops GPU: 227 Gflops (Speedup: ~27)

– Sssmqr
– CPU: 10Gflops GPU: 285Gflops (Speedup: ~28)

• Task distribution observed on StarPU
– sgeqrt: 20% of tasks on GPUs
– Sssmqr: 92.5% of tasks on GPUs

• Taking advantage of heterogeneity !
– Only do what you are good for
– Don't do what you are not good for

Mixing PLASMA and MAGMA with StarPU

 https://exa2pro.eu

279

Cluster support

 https://exa2pro.eu

287

How to scale over MPI?

(StarPU handles intra-MPInode scheduling fine)

• Splitting graph by hand
• Complex, not flexible

• Master-Slave does not scale
➔ Each node should determine its duty by itself

• Algebraic representation of e.g. Parsec
• Difficult to write
• Not flexible enough for any kind of application

• Recursive task graph unrolling
• Complex

➔ Rather just unroll the whole task graph on each node

 https://exa2pro.eu

289

• Application decides data distribution over MPI nodes

• But data coherency extended to the MPI level
• Automatic starpu_mpi_send/recv calls for each task

• Similar to a DSM, but granularity is whole data and whole
task

• All nodes process the whole algorithm
• Actual task execution according to data being written to

Sequential-looking code !

Automatic generation of Send/Recv
MPI VSM

 https://exa2pro.eu

290

MPI VSM

For (k = 0 .. tiles – 1) {

POTRF(A[k,k])

for (m = k+1 .. tiles – 1)

TRSM(A[k,k], A[m,k])

for (m = k+1 .. tiles – 1) {

SYRK(A[m,k], A[m,m])

for (n = m+1 .. tiles – 1)

GEMM(A[m,k], A[n,k], A[n,m])

}

}

 https://exa2pro.eu

291

MPI VSM

• Data mapping (e.g. 2D block-cyclic)
int get_rank(int m, int n) { return ((m%p)*q + n%q); }

For (m = 0 .. tiles – 1)

For (n = m .. tiles – 1)

set_rank(A[m,n], get_rank(m,n));

For (k = 0 .. tiles – 1) {

POTRF(A[k,k])

for (m = k+1 .. tiles – 1)

TRSM(A[k,k], A[m,k])

for (m = k+1 .. tiles – 1) {

SYRK(A[m,k], A[m,m])

for (n = m+1 .. tiles – 1)

GEMM(A[m,k], A[n,k], A[n,m])

}

}

 https://exa2pro.eu

294

MPI VSM

• Each node unrolls the whole task graph
• Data ↔ node mapping

• Provided by the application
– E.g. 2D block-cyclic

• Can be modified during submission
starpu_mpi_data_migrate()

• Task ↔ node mapping
• Tasks move to data they modify

• Separation of concerns: graph vs mapping

• MPI transfers
• Automatically queued

• Local view of the computation
• No synchronizations
• No global scheduling

 https://exa2pro.eu

295

MPI VSM

• Right-Looking Cholesky decomposition (from PLASMA)

Node 0 execution Node 1 execution

 https://exa2pro.eu

296

Cholesky cluster performance
@CEA: 144 nodes with 8 CPU cores (E5620) + 2 GPUs (M2090)

 https://exa2pro.eu

373

Simulation

 https://exa2pro.eu

379

Simulation with SimGrid

From A. Legrand
and L. Stanisic

App

 https://exa2pro.eu

380

Simulation with SimGrid

From A. Legrand
and L. Stanisic

App

App

 https://exa2pro.eu

386

Simulation with SimGrid

• Run application natively on target system
• Records performance models

• Rebuild application against simgrid-compiled StarPU

• Run again
• Uses performance model estimations

instead of actually executing tasks

• Way faster execution time

• Reproducible experiments

• No need to run on target system

• Can change system architecture

 https://exa2pro.eu

387

Simulation with SimGrid

• Run application natively on target system
• Records performance models

• Rebuild application against simgrid-compiled StarPU

• Run again
• Uses performance model estimations

instead of actually executing tasks

• Way faster execution time

• Reproducible experiments

• No need to run on target system

• Can change system architecture

 https://exa2pro.eu

437

Task graphs

• Nice programming model
• Keep sequential program!

• Optimized execution

• Playground for research
• Scheduling
• Fault Tolerance
• Statistics

• Used for various real-world computations
• Cholesky/QR/LU (dense/sparse/compressed),

stencil, CG, CFD, FMM…

http://starpu.gitlabpages.inria.fr/tutorials/

Conclusion

 https://exa2pro.eu

438

StarPU Tutorial on February 24h

• To be run in a docker container

• Please follow the EXA2PRO Getting Started Guide
• See attachment in the timetable of the event
• Section 2 « Installation »
• Takes 1/2h - 1h

