INVENTORS FOR THE DIGITAL WORLD

StarPU, a Task-Based Runtime System

for Heterogeneous Platform Programming

Olivier Aumage, Team STORM
Inria — LaBRI
olivier.aumage@inria.fr

STATIC OPTIMIZATIONS ~ RUNTIME METHODS

olivier.aumage@inria.fr

Team STORM

STatic Optimizations, Runtime Methods

= Inria Bordeaux — Sud-Ouest, LaBRI Laboratory

= Head: Denis Barthou S
Domain Specific Languages

(Qiral, SYCL, P-EDGE, SOTL)

= Research directions R TS

. (OpenMP, OpenCL)
— Expressing...

— Adapting... ... parallelism
— Optimizing...

Compiler
(KSTAR)

Runtime System
(StarPU)

Parallel Architectures
(SIMD, mutticore CPU, GPU, manycore accelerators)

StarPU Runtime

id)

Performance Abstraction
(StarPU / Si

Contents

Runtime Systems for Heterogeneous Platforms
The StarPU Task-Based Runtime System
Programming with StarPU

StarPU Internals
Scheduling Policies

Data Management

Analysis and Monitoring

Distributed Computing

Interoperability and Composition

10 Advanced Scheduling Topics

11. Advanced Data Management Topics

12. Advanced Analysis and Monitoring Topics
13. Conclusion

LN W

-
-
l 02’3&0/— 0. Aumage — StarPU Runtime

Runtime Systems for Heterogeneous Plat-
forms

-
-
&LW 0. Aumage — StarPU Runtime 4

Hardware Evolution

More capabilities, more complexity

1. Runtime Systems

Hardware Evolution

More capabilities, more complexity
Display

= Higher resolutions

= 2D acceleration

= 3D rendering

1. Runtime Systems

Hardware Evolution

More capabilities, more complexity

Display

= Higher resolutions

= 2D acceleration

= 3D rendering
Networking

= Processing offload

« Zero-copy transfers

= Hardware multiplexing

1. Runtime Systems

Hardware Evolution

More capabilities, more complexity

Display

= Higher resolutions

= 2D acceleration

= 3D rendering
Networking

= Processing offload

« Zero-copy transfers

= Hardware multiplexing
1/0

- RAID

= SSD vs Disks

= Network-attached disks

= Parallel file systems

1. Runtime Systems

Hardware Evolution

More capabilities, more complexity

Display
= Higher resolutions
= 2D acceleration
= 3D rendering
Networking
= Processing offload Computing Hardware?
« Zero-copy transfers
= Hardware multiplexing
1/0
- RAID
= SSD vs Disks
= Network-attached disks
= Parallel file systems

1. Runtime Systems

Technology Dilemma for the Application Programmer

.
-
l &ZW 1. Runtime Systems 6

Technology Dilemma for the Application Programmer

Stay conservative?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Stay conservative?

= Only use long established features
— Display: Basic graphics or terminal output
— Networking: Unix systems calls, TCP sockets
— 1/0: Unix systems calls, read/write

1. Runtime Systems

Technology Dilemma for the Application Programmer

Stay conservative?

= Only use long established features

— Display: Basic graphics or terminal output
— Networking: Unix systems calls, TCP sockets
— 1/0: Unix systems calls, read/write

« Under-used hardware?

« Low performance?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
= Efficiency

= Convenience

1. Runtime Systems

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
= Efficiency

= Convenience

= Portability?
— What if the application is used on different hardware?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
= Efficiency

= Convenience
= Portability?
— What if the application is used on different hardware?

« Adaptiveness?
— What if hardware resource availability/capacity is higher? Lower?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
= Efficiency

= Convenience
= Portability?
— What if the application is used on different hardware?
« Adaptiveness?
— What if hardware resource availability/capacity is higher? Lower?
= Cost?
— Is it worthwhile to use such “specific” features?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
= Efficiency
= Convenience
= Portability?
— What if the application is used on different hardware?

« Adaptiveness?
— What if hardware resource availability/capacity is higher? Lower?

= Cost?
— Is it worthwhile to use such “specific” features?
« Long-term viability?
= Vendor-tied code?
— Is it worthwhile to invest into porting on such platforms?

1. Runtime Systems

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

1. Runtime Systems

1.1

Principles of Runtime Systems

-
-
&LW 0. Aumage — StarPU Runtime 9

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

1. Runtime Systems

Technology Dilemma for the Application Programmer
Answer: Use runtime systems!

The Role(s) of Runtime Systems

= Portability

1. Runtime Systems

Technology Dilemma for the Application Programmer
Answer: Use runtime systems!

The Role(s) of Runtime Systems
= Portability

= Control

1. Runtime Systems

Technology Dilemma for the Application Programmer
Answer: Use runtime systems!
The Role(s) of Runtime Systems

= Portability

= Control

= Adaptiveness

1. Runtime Systems

Technology Dilemma for the Application Programmer
Answer: Use runtime systems!

The Role(s) of Runtime Systems
= Portability
= Control
= Adaptiveness

= Optimization

1. Runtime Systems

Examples of Runtime Systems

1. Runtime Systems

Examples of Runtime Systems

Networking
« MPI (Message Passing Interface), Global Arrays
- GASPI / GPI-2
= GASNet, CCI
=« Distributed Shared Memory systems
« SHMEM

1. Runtime Systems

Examples of Runtime Systems

Networking
« MPI (Message Passing Interface), Global Arrays
- GASPI / GPI-2
= GASNet, CCI
=« Distributed Shared Memory systems
« SHMEM

Graphics
= DirectX, Direct3D (Microsoft Windows)
= OpenGL

1. Runtime Systems

Examples of Runtime Systems

Networking
« MPI (Message Passing Interface), Global Arrays
- GASPI / GPI-2
= GASNet, CCI
=« Distributed Shared Memory systems
« SHMEM
Graphics
= DirectX, Direct3D (Microsoft Windows)
= OpenGL
1/0
= MPI-IO
« HDF5 libraries
= Database engines

-
-
l &Z/Zm/— 1. Runtime Systems

The Role(s) of Runtime Systems: Portability

1. Runtime Systems

The Role(s) of Runtime Systems: Portability

= Abstraction

— Uniform front-end layer
— Device-independent API
— Targeted by applications

IS

L |
(T =

* Hardware Devices "

1. Runtime Systems

The Role(s) of Runtime Systems: Portability

= Abstraction

— Uniform front-end layer
— Device-independent API
— Targeted by applications

= Drivers, plugins

— Device-dependent backend layer
— Targeted by vendors and/or device specialist

oW g
L u

Application

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Portability

= Abstraction

— Uniform front-end layer
— Device-independent API
— Targeted by applications

= Drivers, plugins

— Device-dependent backend layer
— Targeted by vendors and/or device specialist

= Decoupling applications from device specific matters

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Control

W
| m. B
L B3~ HEN B

Application

1. Runtime Systems

The Role(s) of Runtime Systems: Control

= Resource mapping

— Deciding which hardware resource to use/not to use for some application
workload
— Spatial work mapping

EEEE
BEEE !N
Em| EEEE

* Hardware Devices "

N\

0o oo

Application

1. Runtime Systems

The Role(s) of Runtime Systems: Control

= Resource mapping

— Deciding which hardware resource to use/not to use for some application
workload
— Spatial work mapping

« Scheduling

— Deciding when and in which order to perform some application workload
— Temporal work mapping

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Control

= Resource mapping

— Deciding which hardware resource to use/not to use for some application
workload
— Spatial work mapping

« Scheduling

— Deciding when and in which order to perform some application workload
— Temporal work mapping

= Plan application workload execution

EEEE

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Adaptiveness

1. Runtime Systems

The Role(s) of Runtime Systems: Adaptiveness

= Discovering, sampling, calibrating
— Detecting qualitative hardware capabilities
— Providing fallbacks, when possible
— Detecting quantitative hardware capabilities

RERERE =~
T B
.

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Adaptiveness

= Discovering, sampling, calibrating
— Detecting qualitative hardware capabilities
— Providing fallbacks, when possible
— Detecting quantitative hardware capabilities

= Monitoring, load balancing

— Throttling workload feed
— Reacting to hardware status changes

RERERE =~
T B
.

* Hardware Devices

< N
[m DDN/

Application

1. Runtime Systems

The Role(s) of Runtime Systems: Adaptiveness

= Discovering, sampling, calibrating
— Detecting qualitative hardware capabilities
— Providing fallbacks, when possible
— Detecting quantitative hardware capabilities

= Monitoring, load balancing

— Throttling workload feed
— Reacting to hardware status changes

= Cope with effective hardware aptitude and performance level

RERERE =~
T B
.

* Hardware Devices

<
oo B0

Application

1. Runtime Systems

The Role(s) of Runtime Systems: Optimization

1. Runtime Systems

The Role(s) of Runtime Systems: Optimization

. Capitalize on workload look-ahead to bring performance-oriented added
value
— Requests aggregation
— Resource locality
— Computation offload
— Computation/transfer overlap

N

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Optimization

. Capitalize on workload look-ahead to bring performance-oriented added
value

— Requests aggregation

— Resource locality

— Computation offload

— Computation/transfer overlap

= Take advantage of the cross-cutting point of view of the runtime system
— Perform global optimizations when possible

SN
T -
. i HE
Application

* Hardware Devices

1. Runtime Systems

The Role(s) of Runtime Systems: Optimization

. Capitalize on workload look-ahead to bring performance-oriented added
value

— Requests aggregation

— Resource locality

— Computation offload

— Computation/transfer overlap

= Take advantage of the cross-cutting point of view of the runtime system
— Perform global optimizations when possible

« Out-weight the cost of an extra, intermediate software layer

\EE\E"/:L// .E= HE .N

Application

* Hardware Devices

1. Runtime Systems

1.2

Runtime Systems for Computing

-
-
&LW 0. Aumage — StarPU Runtime

Evolution of Computing Hardware

Rupture
= The “Frequency Wall”

— Processing units cannot run anymore faster

= Looking for other sources of performance

1. Runtime Systems

Evolution of Computing Hardware

Rupture
= The “Frequency Wall”

— Processing units cannot run anymore faster

= Looking for other sources of performance

Hardware Parallelism
= Multiply existing processing power
— Have several processing units work together

1. Runtime Systems

Evolution of Computing Hardware

Rupture
= The “Frequency Wall”

— Processing units cannot run anymore faster

= Looking for other sources of performance

Hardware Parallelism
= Multiply existing processing power
— Have several processing units work together

= Not a new idea. ..

« ...but definitely the key performance factor now

1. Runtime Systems

Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator
Generalization

1. Runtime Systems

00 oo
00 oo
od oo
oo oo

>

Application

o
o
(=
o
b
c

I
_ﬁ GPU

| —

Heterogeneous Parallel Platform

Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator

Generalization
« Distributed cores, discrete accelerators
— Standalone GPUs
— Intel Xeon Phi (KNC) Application

00 oo
00 oo
od oo
00 oo

>

E— E—
©j— cpy wmm cpy
—

I

GPU

Heterogeneous Parallel Platform

1. Runtime Systems

Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator

00 oo
00 oo
oo oo
00 oo

Generalization »
« Distributed cores, discrete accelerators W
— Standalone GPUs
— Intel Xeon Phi (KNC) Application
= Integrated cores
— Intel Skylake / Kaby Lake — —
— Intel Xeon Phi (KNL) e cpy = cpy
— AMD Fusion _— | —

— nVidia Tegra, ARM big.LITTLE

I
F GPU
I

Heterogeneous Parallel Platform

1. Runtime Systems

Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator

00 oo
00 oo
oo oo
00 oo

Generalization »
« Distributed cores, discrete accelerators W
— Standalone GPUs
— Intel Xeon Phi (KNC) Application
= Integrated cores
— Intel Skylake / Kaby Lake — —
— Intel Xeon Phi (KNL) e cpy = cpy
— AMD Fusion __ | (—

— nVidia Tegra, ARM big.LITTLE
= Combination of various units

— Latency-optimized cores

— Throughput-optimized cores

— Energy-optimized cores

I
_; GPU
I

Heterogeneous Parallel Platform

1. Runtime Systems

Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator
Generalization

« Distributed cores, discrete accelerators _/_/\/

— Standalone GPUs

— Intel Xeon Phi (KNC) Application
= Integrated cores

— Intel Skylake / Kaby Lake — —

— Intel Xeon Phi (KNL) = cpy === cpy mmmmj

— AMD Fusion — = . —

— nVidia Tegra, ARM big.LITTLE
= Combination of various units

— Latency-optimized cores

— Throughput-optimized cores

— Energy-optimized cores

00 oo
00 00
Oo0 oo
00 00

W,

I
_; GPU
| I—

= Overall increased parallelism diversity
— Multiprocessors, multicores
— Vector processing extensions
— Accelerators

Heterogeneous Parallel Platform

1. Runtime Systems

Example: CPU vs GPU Hardware [°™

Multiple strategies for multiple purposes Control E E

- CPU

— Strategy Cache

— Large caches
— Large control

— Purpose

— Complex codes, branching
— Complex memory access patterns

— World Rally Championship car
. GPU
— Strategy

Lot of computing poner SHENENNNNYNY

~ Simplified control
— Purpose

— Regular data parallel codes
— Simple memory access patterns

— Formula One car

~ GPU

1. Runtime Systems

Accelerators
Special purpose computing devices
(or general purpose GPUs)
= (initially) a discrete expansion card

= Rationale: dye area trade-off

1. Runtime Systems

Accelerators
Special purpose computing devices
(or general purpose GPUs)
= (initially) a discrete expansion card

= Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
= A single control unit. ..

« ... for several computing units

1. Runtime Systems

Accelerators
Special purpose computing devices
(or general purpose GPUs)
= (initially) a discrete expansion card

= Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
= A single control unit. ..

« ... for several computing units

1. Runtime Systems

Streaming Multiprocessor

Scalar Cores.

(Streaming Processors)
-

GPU

Accelerators
Special purpose computing devices
(or general purpose GPUs)
= (initially) a discrete expansion card

= Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
= A single control unit. ..

« ... for several computing units

SIMT is distinct from SIMD
= Allows flows to diverge
« ... but better avoid it!

1. Runtime Systems

GPU

Streaming Multiprocessor

Control

Scalar Cores
(Streaming Processors)
 S—

if{cond){

} else {

Problematics

Unified computing runtime system for heterogeneous platforms
= Portability of performance

— Abstraction

— Adaptiveness

— Execution Control
— Optimization

Need a way to abstract application execution. ..

...into elementary, manageable objects

1. Runtime Systems

1.3

Abstracting Application Workload

-
-
&LW 0. Aumage — StarPU Runtime

Thread Scheduling

Reasoning on Thread objects?

Thread
« One instruction flow

— Unbounded flow
— Parallel activity

= One state/context per thread
— Stack

1. Runtime Systems

Thread Scheduling

Reasoning on Thread objects?

Thread « Examples
= One instruction flow — OpenMP parallel regions
— libpthread

— Unbounded flow
— Parallel activity — C++ threads
= One state/context per thread

— Stack

1. Runtime Systems

Thread Scheduling

Reasoning on Thread objects?

Thread « Examples
= One instruction flow — OpenMP parallel regions
— Unbounded flow — libpthread
— Parallel activity — C++ threads
= One state/context per thread
— Stack —
CPU
B B
CPU
1
CPU
" Parallel Platform

1. Runtime Systems

Thread Scheduling

Reasoning on Thread objects?

Thread « Examples
= One instruction flow — OpenMP parallel regions
— libpthread

— Unbounded flow
— Parallel activity

= One state/context per thread

— C—++ threads

— Stack M
CPU
OROEE e B
I
L OEes cPU
I |
OPO& 1
CPU
Application
" Parallel Platform

1. Runtime Systems

Thread Scheduling

Reasoning on Thread objects?

Thread
« One instruction flow

— Unbounded flow
— Parallel activity

= One state/context per thread
— Stack M

¢ _/
O@EE0E

Application

« Examples
— OpenMP parallel regions
— libpthread
— CH+ threads

" Parallel Platform

1. Runtime Systems

Threads: Resources vs Needs

Lack of abstraction
= Threads express explicit resource request

. instead of application requirements

1. Runtime Systems

Threads: Resources vs Needs

Lack of abstraction
= Threads express explicit resource request

. instead of application requirements

CPU

' v
\Ejiij‘-/ cPU

Application

" Parallel Platform

1. Runtime Systems

Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads

1. Runtime Systems

Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads

CPU

' v
\Ejiij‘-/ cPU

Application

" Parallel Platform

1. Runtime Systems

Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads

10 [
OOEE
I
I [

' v
- OmeEe

Application

" Parallel Platform

1. Runtime Systems

Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads

' ~ { 0% |
AN
SR X

Application

" Parallel Platform

1. Runtime Systems

Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads

4
\ / (a0, 08 N\ “hvcads
\ 95'9@ ¥
RECOW M

Application

" Parallel Platform -

Time

1. Runtime Systems

Threads: Lack of Semantics

What does a thread really do?
= Resource usage?
= Inter-thread constraints

= Chaining constraints, ordering?

Planning Issues
« Unbounded computation

= System-controlled context switches

Consequences
= Heavy synchronizations: barriers
= User-managed fine-grain synchronizations: locks, mutexes

= Little to no help from runtime system

1. Runtime Systems

Threads: Load Balancing Issues

Keeping every hardware unit busy
= Irregular application, workload
= Uncontrolled synchronization shift

= Heterogeneous platforms: accelerators, GPU

1. Runtime Systems

Threads: Load Balancing Issues

Keeping every hardware unit busy
= Irregular application, workload
= Uncontrolled synchronization shift

= Heterogeneous platforms: accelerators, GPU

X P
W

Application

" Parallel Platform -

Time

1. Runtime Systems

Threads: Load Balancing Issues

Keeping every hardware unit busy
= Irregular application, workload
= Uncontrolled synchronization shift

= Heterogeneous platforms: accelerators, GPU

OEO0O&E
OEOCE
OEOC0O&E
I |

¢ A
OREC

Application

CPU

* Parallel Platform

1. Runtime Systems

Threads: Networking and 1/O Issues

= Computation/communication overlapping?
= Bulk I/O / network transfer mitigation?

= Thread-level idle time reduction?

1. Runtime Systems

Threads: Networking and 1/O Issues

= Computation/communication overlapping?
= Bulk I/O / network transfer mitigation?

= Thread-level idle time reduction?

X S
. OEEEE

Application

Time

1. Runtime Systems

" Parallel Platform -

Threads: Networking and 1/O Issues

= Computation/communication overlapping?
= Bulk I/O / network transfer mitigation?

= Thread-level idle time reduction?

OEOO&E
OEECm
. Dooom
OFEOE -
0E00
Application ~— T
Join Fork
: 1 _ :: * Parallel Platform
I
=l

1. Runtime Systems

Threads: Outcome

Perhaps not the right semantics for end-user application development

= Over-constrained concept for application programming

= Awkward object to manipulate at the runtime system level

= Not well suited to leverage theoretical scheduling results
— Completion?
— Other metrics?

1. Runtime Systems

Task Scheduling

. . Input dependencies A DE DE B
Reasoning on Task objects Ek j
Common definition Computation kernel A = A+B

- Elementary computation

— Numerical kernel
— BLAS call

Output dependencies ABEQ

« — Potential parallel work

" Task = an « elementary »

i —
putation +

1. Runtime Systems

Task Scheduling

. . Input dependencies AHS EHHs
Reasoning on Task objects EK j
Common definition Computation kernel A =A+B
- Elementary computation
— Numerical kernel
— BLAS call Output dependencies A EE
« — Potential parallel work X Task = an « elementary » computation + depend —

= Constraints
— Input needed
— Output produced
— — Dependencies
— No side effect (no hidden dependencies)

« — Degrees of Freedom in realizing the potential parallelism

1. Runtime Systems

Task Scheduling

. . Input dependencies AHS EHHs
Reasoning on Task objects EK j
Common definition Computation kernel A =A+B
- Elementary computation
— Numerical kernel
— BLAS call Output dependencies A EE
« — Potential parallel work W T T S T —

= Constraints

— Input needed

— Output produced

— — Dependencies

— No side effect (no hidden dependencies)

« — Degrees of Freedom in realizing the potential parallelism

= Shared (often fixed) pool of worker threads
=« — Decoupled engine, to realize a potentially parallel execution

1. Runtime Systems

Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)

The runtime remains free to decide the amount of resources to execute a task

= Rationalize resource consumption

— Thread and associated stack reused among several tasks
. Enforce separation of concerns

— Management code brought out of the application
= Open the way to resource allocation optimization

— Cross-cutting view of the application requirements

1. Runtime Systems

Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)

The runtime remains free to decide the amount of resources to execute a task

= Rationalize resource consumption
— Thread and associated stack reused among several tasks

. Enforce separation of concerns
— Management code brought out of the application
= Open the way to resource allocation optimization
— Cross-cutting view of the application requirements

* Parallel Platform

-
-
l &Z/ZM/— 1. Runtime Systems

Tasks: Resources Miss-subscription?

The runtime system may initialize a pool of worker threads according to the
hardware capabilities

The application submit tasks independently to the runtime, independently of the
hardware capabilities

« Tasks submitted by the application according to its natural algorithm
— Abstraction with respect to hardware

= Workers allocated according to hardware resource, topology
— Typically one thread per core or per hardware thread

« Operating system scheduler interference largely eliminated
— No competition between worker threads

1. Runtime Systems

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

1. Runtime Systems

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

= Optimize spatial resource usage
— Decide which computing resource is best suited for a given task

" Parallel Platform

.
-
l &ZW 1. Runtime Systems

Tasks: Lack of Semantics?
A task expresses what to do (e.g. which computation), under which constraints.
The runtime system can take advantage of this knowledge

= Optimize spatial resource usage
— Decide which computing resource is best suited for a given task

= Optimize temporal resource usage
— Decide in which order to execute tasks

" Parallel Platform

.
-
l &zxzm,- 1. Runtime Systems

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

= Optimize spatial resource usage

— Decide which computing resource is best suited for a given task
= Optimize temporal resource usage

— Decide in which order to execute tasks

« Optimize concurrent resource usage
— Decide which pairs of tasks to execute in parallel

* Parallel Platform

-
-
l &Z/ZM/— 1. Runtime Systems

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

= Optimize spatial resource usage

— Decide which computing resource is best suited for a given task
= Optimize temporal resource usage

— Decide in which order to execute tasks
« Optimize concurrent resource usage

— Decide which pairs of tasks to execute in parallel

= No lock directly manipulated by the application

1. Runtime Systems

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

1. Runtime Systems

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

Application

* Parallel Platform

-
-
l &Z/Zm/— 1. Runtime Systems

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

CPU

CPU

Application

* Parallel Platform

-
-
l &Z/Zm/— 1. Runtime Systems

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

Application

* Parallel Platform

-
-
l &Z/Zm/— 1. Runtime Systems

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

I
_;GPU—
I

Application

Heterogeneous Parallel Platform

1. Runtime Systems

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

e BB —
e cpy mmm cpy mmmf
| I [m] | | —

[=t =i

Application
Heterogeneous Parallel Platform

1. Runtime Systems

Tasks: Networking and 1/0 Issues?

Potential 1-to-1 relationship between tasks and network/IO requests

= Network/IO request may start as soon as the task producing the data has
been completed

= Tasks may be triggered as the result of network/lO requests completion

= Significant difference with fork-join models, MPI+X
— Transparent interoperability
— Avoid deferred network/IO requests until next join
— Avoid custom network/IO requests management inside the application code

1. Runtime Systems

Tasks: Outcome
Task = Characterizable work

= Well-defined
— Workload
— Completion
— Dependencies
— Similar to the pure function concept from Functional programming domain

=« Suitable object for modelling
— Constraints
— Degrees of freedom
— Large corpus of task scheduling theory

. Enforcing separation of concerns
— Application specialist
— Kernel(s) specialist
— Scheduling theoretician specialist
— Runtime-system specialist

1. Runtime Systems

Programming Modern Platforms using Tasks

See second part: Programming Modern Platforms with the StarPU Task-Based
Runtime System

Rich set of existing task-based programming models and associated runtime
systems

« DuctTeip

= Legion

« OCR

« OpenMP 4.x

= OmpSs

« ParalleX

= PaRSEC

= Swan

=« Uintah/Kokkos

= XKaapi

1. Runtime Systems

The StarPU Task-Based Runtime System

-
-
hw 0. Aumage — StarPU Runtime

Heterogeneous Parallel Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator

Generalization
= Distributed cores, discrete accelerators
— Standalone GPUs
— Intel Xeon Phi (KNC)
=« Integrated cores
— Intel Skylake / Kaby Lake
— Intel Xeon Phi (KNL)
— AMD Fusion
— nVidia Tegra, ARM big.LITTLE
= Combination of various units
— Latency-optimized cores

— Throughput-optimized cores
— Energy-optimized cores

00 oo
OO0 0o
oo oo
00 oo

>

Application

— E—
= cpy mmm cpy mmmj
— —

I
_; GPU
I

Heterogeneous Parallel Platform

Task Scheduling

Task Input dependencies A E@ jE‘E B
« Elementary computation ¥
— Some kernel Computation kernel A =A+B
. — Potential parallel work
. Constraints Output dependencies ABEQ
— Input needed
— Output produced " Task = an « elementary » computation + depend. |

— — Dependencies

. — Degrees of Freedom in realizing the potential parallelism

Task Scheduling

Task Input dependencies A E@ jE‘E B
« Elementary computation '
— Some kernel Computation kernel A =A+B
. — Potential parallel work
. Constraints Output dependencies ABEQ
— Input needed
— Output produced " Task = an « elementary » computation + depend. |

— — Dependencies

. — Degrees of Freedom in realizing the potential parallelism

Expressing tasks?
= Divide and conquer: Cilk (recursive tasks)

= Dependencies compiler: PaRSEC (parameterized task graph)

= Sequential task flow: StarPU (directed acyclic task graph)

l(}z,

StarPU Programming Model: Sequential Task Flow

= Express parallelism...

= ... using the natural program flow

= Submit tasks in the sequential flow of the program...

= ... then let the runtime schedule the tasks asynchronously

2. The StarPU Runtime

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

POTRF (A[jI1[iD);

for (i = j+1; i < N; i++)
TRSM (A[i1[31, A[j1051);

for (i = j+1; i < N; i++) {
SYRK (A[il[il, A[i1051);
for (k = j+1; k < i; kt++)

GEMM (A[il[k],
ALl [51, AL

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

POTRF (RW,A[j1[j1);

for (i = j+1; i < N; i++)
TRSM (RW,A[i]1[j1, R,A[j1[51);

for (i = j+1; i < N; i++) {
SYRK (RW,A[il[i], R,A[i1[j1);
for (k = j+1; k < i; kt++)

GEMM (RW,A[i][k],
R,A[i1[31, R,ALkI[31);

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[3j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i] [k],
R,A[i] [3], R,A[X]I[31) D

}
¥
wait_for_all();

Sequential Task Flow Graph Building

Example: Cholesky Decomposition -

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i1[3], R,A[K]I[51))

}
¥
wait_for_all();

. Tasks are submitted asynchronously

Sequential Task Flow Graph Building

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i1[3], R,A[K]I[51))

Example: Cholesky Decomposition | |

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1)); H

for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i1[3], R,A[K]I[51))

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
]

- ... and build a graph of tasks D SYRK
]

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j1[31)); .
for (i = j+1; i < Nj; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));

for (k = j+1; k < i; kt++)

task_insert(GEMM (RW,A[i][k],

R,A[i][3], R,A[KI[31) D
}

¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
]

- ... and build a graph of tasks D SYRK
]

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][il, R,A[i1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i1[3], R,A[K]I[51))

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
[

- ... and build a graph of tasks D SYRK
[

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));

for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i] [k],
R,A[i] [3], R,A[X]I[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
]

- ... and build a graph of tasks D SYRK
]

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[11[j1, R,A[§1031)); E-
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i] [k],
R,A[i] [3], R,A[X]I[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
[

- ... and build a graph of tasks D SYRK
[

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][il, R,A[i1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i1[3], R,A[K]I[51))

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
[

- ... and build a graph of tasks D SYRK
[

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[11[j1, R,A[§1031)); .:
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i] [k],
R,A[i] [3], R,A[X]I[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
[

- ... and build a graph of tasks D SYRK
[

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][il, R,A[i1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i][3], R,A[KI[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
[

- ... and build a graph of tasks D SYRK
[

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition
for (j = 0; j < N; j++) {

task_insert (POTRF (RW,A[j]1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < Nj; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i][3], R,A[KI[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
[

- ... and build a graph of tasks D SYRK
[

l&'z

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[jI1[j1));
for (i = j+1; i < N; i++)
task_insert(TRSM (RW,A[i][j], R,A[j1[31));
for (i = j+1; i < N; i++) {
task_insert(SYRK (RW,A[i][i], R,A[i]1[j1));
for (k = j+1; k < i; kt++)
task_insert(GEMM (RW,A[i][k],
R,A[i][3], R,A[KI[31) D

}
T
wait_for_all();

. Tasks are submitted asynchronously
. StarPU infers data dependences...

« ... and build a graph of tasks

= The graph of tasks is executed

StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
= Allocating computing resources
= Enforcing dependency constraints
= Handling data transfers
Adaptiveness
= A single DAG enables multiple schedulings
= A single DAG can be mapped on multiple platforms

L7 g

2. The StarPU Runtime

Example: SCHNAPS, Implicit kinetic schemes

SCHNAPS Solver (Inria TONUS)
= Example of a task graph submitted to StarPU

Heterogeneous Showcase with Chameleon + StarPU

UTK, Inria HIEPACS, Inria RUNTIME
= QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels

GEQRT

N

TSQRT

—

—

—

N

N

N

ORMQR

N

TSMQR

TSMQR

—

—

—

N

N

N

ORMQR

TSMQR

TSMQR

“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on
a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011."

Heterogeneous Showcase with Chameleon + StarPU

UTK, Inria HIEPACS, Inria RUNTIME
= QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels

. . Measured increase:
4 GPUs + 16 CPUs -+ +
4 GPUs +4 CPUs - -x-- - + + wn— 12CPUs
1000 - 3GPUs +3CPUs --¥--- = = ~200 GFlops
2GPUs +2CPUs &
1GPUs +1CPUs = e
s P .
800 . s)
| e Expected increase:
L +12 CPUs
| J — ~150 Gflops
\g 600 i
K g
g ’
- a a
400 o = 2
200 * .
LA
v
0
0 5000 10000 15000 20000 25000 30000 35000 40000
Matrix order

“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on
a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011."

Heterogeneous Showcase with Chameleon + StarPU

QR kernel properties

Kernel SGEQRT

CPU: 9 GFlop/s GPU: 30 GFlop/s Speed-up: 3
Kernel STSQRT

CPU: 12 GFlop/s GPU: 37 GFlop/s Speed-up: 3
Kernel SOMQRT

CPU: 85 GFlop/s GPU: 227 GFlop/s Speed-up: 27
Kernel SSSMQ

CPU: 10 GFlop/s GPU: 285 GFlop/s Speed-up: 28

Consequences
« Task distribution

— SGEQRT: 20% Tasks on GPU
— SSSMQ: 92% tasks on GPU
« Taking advantage of heterogeneity!

— Only do what you are good for
— Don’t do what you are not good for

l &” 2. The StarPU R

Programming with StarPU

-
-
&?’W 0. Aumage — StarPU Runtime

Terminology

= Codelet
. Task
= Data handle

3. Programming with StarPU

Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

3. Programming with StarPU

Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl

3. Programming with StarPU

Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl

O

3. Programming with StarPU

Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
Task 1: will perform a ’scal’ kernel

3. Programming with StarPU

Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
Task 1: will perform a ’scal’ kernel

'@
®

3. Programming with StarPU

Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
Task 1: will perform a ’scal’ kernel

Task 2: will perform a ’scal’ kernel

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
= ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

. Task 1 waits for input data

3. Programming with StarPU

Definition: A Task

A Task. ..

is an instantiation of a Codelet

. atomically executes a kernel from its beginning to its end
. receives some input

. produces some output

Codelet
scal_cl

. Task 1 receives its input data

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

‘ Task 1 is running

3. Programming with StarPU

Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

‘ Task 1 outputs data result

{

B

3. Programming with StarPU

Definition: A Data Handle

A Data Handle. ..
= ... designates a piece of data managed by StarPU
- ... is typed (vector, matrix, etc.)

= ... can be passed as input/output for a Task

3. Programming with StarPU

Elementary API

= Declaring a codelet

= Declaring and Managing Data
= Writing a Kernel Function

« Submitting a task

= Waiting for submitted tasks

3. Programming with StarPU

Declaring a Codelet

Define a struct starpu_codelet

-

struct starpu_codelet scal_cl = {

}s

w

3. Programming with StarPU

Declaring a Codelet

Define a struct starpu_codelet
= Plug the kernel function
— Here: scal_cpu_func

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func, NULL },

}i

3. Programming with StarPU

Declaring a Codelet

Define a struct starpu_codelet
= Plug the kernel function
— Here: scal_cpu_func
« Declare the number of data pieces used by the kernel
— Here: A single vector

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func, NULL },
.nbuffers = 1,

[N O

3. Programming with StarPU

Declaring a Codelet

Define a struct starpu_codelet
= Plug the kernel function
— Here: scal_cpu_func
« Declare the number of data pieces used by the kernel
— Here: A single vector
= Declare how the kernel accesses the piece of data
— Here: The vector is scaled in-place, thus R/W

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func, NULL },
.nbuffers = 1,
.modes = { STARPU_RW },

[N O

}

3. Programming with StarPU

Declaring and Managing Data

Put data under StarPU control

3. Programming with StarPU

Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data

-

float vector [NX];
2/« ... fill data ... %/

3. Programming with StarPU

Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data
- Register the piece of data and get a handle
— The vector is now under StarPU control

float vector [NX];
/¥ ... fill data ... %/

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]));

L N N

3. Programming with StarPU

Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data
- Register the piece of data and get a handle
— The vector is now under StarPU control

= Use data through the handle

float vector [NX];
/¥ ... fill data ... %/

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle ,

© N O oA W N e

/% ... use the vector through the handle

0,

(uintptr_t)vector, NX, sizeof(vector[0]));

*/

3. Programming with StarPU

Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data

- Register the piece of data and get a handle
— The vector is now under StarPU control

= Use data through the handle

= Unregister the piece of data

— The handle is destroyed
— The vector is now back under user control

float vector [NX];
/¥ ... fill data ... %/

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]));

/% ... use the vector through the handle ... x/

starpu_data_unregister(vector_handle);

3. Programming with StarPU

Writing a Kernel Function

= Every kernel function has the same C prototype

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

}

w

3. Programming with StarPU

Writing a Kernel Function

= Every kernel function has the same C prototype

= Retrieve the vector's handle

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {
struct starpu_vector_interface xvector_handle = buffers
[o];

N}

3. Programming with StarPU

Writing a Kernel Function

= Every kernel function has the same C prototype
= Retrieve the vector’s handle

= Get vector's number of elements and base pointer

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

2 struct starpu_vector_interface xvector_handle = buffers
[o];

3

4 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

5 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

6

7

s}

3. Programming with StarPU

Writing a Kernel Function

= Every kernel function has the same C prototype
= Retrieve the vector’s handle
= Get vector's number of elements and base pointer

= Get the scaling factor as inline argument

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

2 struct starpu_vector_interface xvector_handle = buffers
[o];

3

4 unsigned n = STARPU_VECTOR_GET _NX(vector_handle);

5 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

6

7 float *xptr_factor = cl_arg;

8

9

3. Programming with StarPU

Writing a Kernel Function

= Every kernel function has the same C prototype

= Retrieve the vector’s handle

= Get vector's number of elements and base pointer
= Get the scaling factor as inline argument

« Compute the vector scaling

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

2 struct starpu_vector_interface xvector_handle = buffers
[o];

3

4 unsigned n = STARPU_VECTOR_GET _NX(vector_handle);

5 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

6

7 float *xptr_factor = cl_arg;

8

9 unsigned i;

10 for (i = 0; i <n; i+4)

1 vector[i] *= xptr_factor;

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments

= The codelet structure

1 starpu_task_insert(&scal_cl

))

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data

1 starpu_task_insert(&scal_cl,
2 STARPU_RW, vector_handle,

3)v

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data

= The small-size inline data

sizeof (factor),

1 starpu_task_insert(&scal_cl,

2 STARPU_RW, vector_handle,
3 STARPU_VALUE , &factor ,

4)

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data
= The small-size inline data

= 0 to mark the end of arguments

sizeof (factor),

1 starpu_task_insert(&scal_cl,

2 STARPU_RW, vector_handle,
3 STARPU_VALUE , &factor ,

4 0);

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments

= The codelet structure

= The StarPU-managed data

= The small-size inline data

= 0 to mark the end of arguments
Notes

« The task is submitted non-blockingly

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments

= The codelet structure

= The StarPU-managed data

= The small-size inline data

= 0 to mark the end of arguments
Notes

= The task is submitted non-blockingly

« Dependencies are enforced with previously submitted tasks’ data. . .

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data
= The small-size inline data
= 0 to mark the end of arguments
Notes
= The task is submitted non-blockingly
= Dependencies are enforced with previously submitted tasks’ data. . .

« ... following the natural order of the program

3. Programming with StarPU

Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data
= The small-size inline data
= 0 to mark the end of arguments
Notes
= The task is submitted non-blockingly
= Dependencies are enforced with previously submitted tasks’ data. . .
« ... following the natural order of the program

= This is the Sequential Task Flow Paradigm

3. Programming with StarPU

Wiaiting for Submitted Task Completion

= Tasks are submitted non-blockingly

3. Programming with StarPU

Wiaiting for Submitted Task Completion

= Tasks are submitted non-blockingly

-

/+* non—blocking task submits x/
starpu_task_insert (...);

N

3. Programming with StarPU

Wiaiting for Submitted Task Completion

= Tasks are submitted non-blockingly

= Wait for all submitted tasks to complete their work

1 /x non—blocking task submits x/
2| starpu_task_insert (...);

3. Programming with StarPU

Wiaiting for Submitted Task Completion

o oA W N e

= Tasks are submitted non-blockingly

= Wait for all submitted tasks to complete their work

/+* non—blocking task submits x/
starpu_task_insert (...);

/* wait for all task submitted so far x/
starpu_task_wait_for_all();

3. Programming with StarPU

Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
2 float vector [NX];

[

3. Programming with StarPU

Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

w N e

3. Programming with StarPU

Basic Example: Scaling a Vector (main prog.)

© N O oA W N e

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

3. Programming with StarPU

Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

© N O oA W N e

10 starpu_task_insert(

11 &scal_cl,

12 STARPU_RW, vector_handle,

13 STARPU_VALUE , &factor, sizeof(factor),
14 0);

3. Programming with StarPU

Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

© N O oA W N e

10 starpu_task_insert(

11 &scal_cl,

12 STARPU_RW, vector_handle,

13 STARPU_VALUE , &factor, sizeof(factor),
14 0);

15
16| starpu_task_wait_for_all();

3. Programming with StarPU

Basic Example: Scaling a Vector (main prog.)

© N O oA W N e

10
11
12
13
14
15
16
17
18
19

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

starpu_task_insert(
&scal_cl,
STARPU_RW, vector_handle,
STARPU_VALUE , &factor, sizeof(factor),
0);

starpu_task_wait_for_all();
starpu_data_unregister(vector_handle);

/« ... display vector ... x/

3. Programming with StarPU

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms

3. Programming with StarPU

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
= Multiple kernel implementations for a CPU
— SSE, AVX, ... optimized kernels

1 struct starpu_codelet scal_cl = {

2 .cpu_func = { scal_cpu_func,

3 scal_sse_cpu_func, scal_avx_cpu_func, NULL },
4 .nbuffers = 1,

5 .modes = { STARPU_RW },

6 };

3. Programming with StarPU

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
= Multiple kernel implementations for a CPU
— SSE, AVX, ... optimized kernels
= Kernels implementations for accelerator devices
— OpenCL, NVidia Cuda kernels

1 struct starpu_codelet scal_cl = {

2 .cpu_func = { scal_cpu_func,

3 scal_sse_cpu_func, scal_avx_cpu_func, NULL },
4 .opencl_func = { scal_cpu_opencl, NULL },

5 .cuda_func = { scal_cpu_cuda, NULL },

6 .nbuffers = 1,

7 .modes = { STARPU_RW },

8 };

3. Programming with StarPU

Writing a Kernel Function for CUDA

3. Programming with StarPU

Writing a Kernel Function for CUDA

1

2

3

4

5

6

7

s extern "C" void scal_cuda_func(void sbuffers[], void xcl_arg)
{

9 struct starpu_vector_interface xvector_handle = buffers

[0];

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float xvector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14

15

16

17

18

0 }

3. Programming with StarPU

Writing a Kernel Function for CUDA

1

2

3

4

5

6

7

s extern "C" void scal_cuda_func(void sbuffers[], void xcl_arg)
{

9 struct starpu_vector_interface xvector_handle = buffers

[0];

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float *xvector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14 unsigned threads_per_block = 64;

15 unsigned nblocks = (n+threads_per_block —1)/

threads_per_block;

3. Programming with StarPU

Writing a Kernel Function for CUDA

1
2
3
4
5
6
7
8

10
11
12
13
14
15

16
17
18

extern "C" void scal_cuda_func(void xbuffers[], void xcl_arg)
{
struct starpu_vector_interface xvector_handle = buffers
[0];
unsigned n = STARPU_VECTOR_GET_NX(vector_handle);
float *xvector = STARPU_VECTOR_GET_PTR(vector_handle);
float *xptr_factor = cl_arg;

unsigned threads_per_block = 64;
unsigned nblocks = (n+threads_per_block —1)/

threads_per_block;

vector_mult_cuda<<<nblocks ,threads_per_block 0,

starpu_cuda_get_local_stream ()>>>(n, vector ,*
ptr_factor);

3. Programming with StarPU

Writing a Kernel Function for CUDA

1 static __global__ void vector_mult_cuda(unsigned n,
2 float xvector, float factor
)

3 unsigned i = blockldx .x*xblockDim.x 4+ threadldx.x;

4

5

s }

7

s extern "C" void scal_cuda_func(void xbuffers[], void *cl_arg)

9 struct starpu_vector_interface *xvector_handle = buffers
[0l;

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14 unsigned threads_per_block = 64;

15 unsigned nblocks = (n+threads_per_block —1)/
threads_per_block;

16

17 vector_mult_cuda<<<nblocks ,threads_per_block 0,

18 starpu_cuda_get_local_stream ()>>>(n, vector ,x

ptr_factor);

AD,

LA —

Writing a Kernel Function for CUDA

1 static __global__ void vector_mult_cuda(unsigned n,
2 float xvector, float factor
)

3 unsigned i = blockldx .x*xblockDim.x 4+ threadldx.x;

4 if (i <n)

5 vector[i] *= factor;

s}

7

s extern "C" void scal_cuda_func(void xbuffers[], void *cl_arg)

9 struct starpu_vector_interface *xvector_handle = buffers
[ol;

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14 unsigned threads_per_block = 64;

15 unsigned nblocks = (n+threads_per_block —1)/
threads_per_block;

16

17 vector_mult_cuda<<<nblocks ,threads_per_block 0,

18 starpu_cuda_get_local_stream ()>>>(n, vector ,x

ptr_factor);

AD,

LA —

StarPU Internals

StarPU Runtime

StarPU Internal Structure

HPC Applications

library

High-level data management

Execution model

Scheduling engine

Specific drivers

Mastering CPUs, GPUs, SPUs ... *PU > StarPU

4. StarPU Internals

StarPU Internal Functioning

Application
Memory Scheduling engine
Management
(DSM)
. CPU driver
“ GPU driver #k

RAM

Submit task « A+=B »
IW'”

StarPU Internal Functioning

Application

|_A = A+B
Memory ScheduIJhg engine
Management
(DSM)
. CPU driver
“ GPU driver #k

RAM

Submit task « A+=B »
IW'”

StarPU Internal Functioning

Application i

Memory Schedullhg engine

Management
(DSM) /
A = A+B
GPU driver

CPU driver
#k

Schedule task
l&w?'f

e

StarPU Internal Functioning

Application 1
Memory Schedullhg engine
Management
(DSM) /
A = A+B T
| river
GPU driver #k

Fetch data
IWf

StarPU Internal Functioning

Application |
Memory Schedulihg engine
Management
(DSM) /
A = A+B

CPU driver
#k

Fetch data
le

GPU driver

StarPU Internal Functioning

Application |
Memory Schedulihg engine
Management
(DSM) /
A = A+B

CPU driver
#k

Fetch data
IWf

GPU driver

StarPU Internal Functioning

Application |
Memory Schedulihg engine
Management
(DSM) /

CPU driver

GPU driver #K

StarPU Internal Functioning

Application }

Memory Schedulihg engine /

Management
(DSM) /

CPU driver
#k

Notify termination
l&w?'f

Scheduling Policies

StarPU Runtime

StarPU Scheduling Policies

= No one size fits all policy
= Selectable scheduling policy
— Predefined set of popular policies: eager, work-stealing, etc.

5. Scheduling Policies

StarPU Scheduling Policies

« No one size fits all policy
=« Selectable scheduling policy
— Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

5. Scheduling Policies

StarPU Scheduling Policies

« No one size fits all policy
=« Selectable scheduling policy
— Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
= Providing more input to the scheduler. ..
= ... can lead to better scheduling decisions

What kind of information?
= Relative importance of tasks
— Priorities
= Cost of tasks
— Codelet models
= Cost of transferring data
— Bus calibration

5. Scheduling Policies

Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

5. Scheduling Policies

Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

. Example 1: selecting the prio scheduler

1 $ export STARPU_SCHED=prio
2 $ my_program

5. Scheduling Policies

Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler

1 $ export STARPU_SCHED=prio
2 $ my_program

export STARPU_SCHED=dm
my__program

-
A A

5. Scheduling Policies

Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler

Example 3: resetting to default scheduler eager

1 $ export STARPU_SCHED=prio
2 $ my_program

export STARPU_SCHED=dm
my__program

-
A A

1 $ unset STARPU_SCHED
2'$ my_program

5. Scheduling Policies

Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler

Example 3: resetting to default scheduler eager

= No need to recompile the application

1 $ export STARPU_SCHED=prio
2 $ my_program

export STARPU_SCHED=dm
my__program

-
A A

1 $ unset STARPU_SCHED
2'$ my_program

5. Scheduling Policies

Task Mapping using a Performance Model

= Example:
The Deque Model Scheduler

? Time
N[s s |
e [|
Plee——— |
vt [
GPU2 D
Il B .
I B

e e
[©] [¢] [

CPU Cores GPU1 GPU 2

5. Scheduling Policies

Task Mapping using a Performance Model

= Using codelet performance models

— Kernel calibration on each available computing device

— Raw history model of kernels’ past execution times

— Refined models using regression on kernels’ execution times history
= Model parameter(s)

— Data size
— User-defined parameters

5. Scheduling Policies

Data Management

-
-
&LW 0. Aumage — StarPU Runtime

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

-
-

CPU GPU1

MEM

u)
-

LL]

6. Data Management

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

-

1 H
1

|==

StarPU Heterogeneous Execution Model / Data Management

GPUO .

StarPU Heterogeneous Execution Model / Data Management

cPU GPUO .
IE_ [
W]
MEM — _L

n

CPU GPU1

l&'z

StarPU Heterogeneous Execution Model / Data Management

cpy GPUO H
L[] H
1

MEM

LL]

CPU GPU1

« Handles dependencies

l&'z

StarPU Heterogeneous Execution Model / Data Management

1 I
MEM ﬁ I

n

CPU GPU1

« Handles dependencies

l&'z

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

MEM

1110 H
1

LL]

CPU GPU1

« Handles dependencies

l&'z

StarPU Heterogeneous Execution Model / Data Management

IEI T
[
MEM ﬁ I

n

CPU GPU1

GPUO

« Handles dependencies

l&'z

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

MEM

12110 H
1

LL]

CPU GPU1

« Handles dependencies

l(}z,

StarPU Heterogeneous Execution Model / Data Management

IEI T
([
MEM ﬁ I

n

CPU GPU1

GPUO

« Handles dependencies

l(}z,

StarPU Heterogeneous Execution Model / Data Management

IEI T
([
MEM ﬁ I

n

CPU GPU1

GPUO

« Handles dependencies

l&'z

StarPU Heterogeneous Execution Model / Data Management

IEI T
([
MEM ﬁ I

n

CPU GPU1

GPUO

« Handles dependencies

= Handles scheduling (policy)

l&'z

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

MEM

T
[[]]
]

LL]

CPU GPU1

« Handles dependencies

= Handles scheduling (policy)

l&'z

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

[H

MEM

T
H B
e

LL]

CPU GPU1

« Handles dependencies
= Handles scheduling (policy)
= Handles data consistency (MSI

l&'z

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

]
| =l
=

MEM ﬂ

.

CPU GPU1

« Handles dependencies
= Handles scheduling (policy)
= Handles data consistency (MSI

l&'z

StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

0
B

1 GPUO

CPU GPU1

MEM

LL]

« Handles dependencies
= Handles scheduling (policy)
= Handles data consistency (MSI

l&'z

StarPU Heterogeneous Execution Model / Data Management

P e §
I

[

MEM ﬁ 1_

n

CPU GPU1

GPUO

« Handles dependencies
= Handles scheduling (policy)

= Handles data consistency (MSI
protocol)

6. Data Management

StarPU Heterogeneous Execution Model / Data Management

o mE
i
T r— _L

n

CPU GPU1

GPUO

« Handles dependencies
= Handles scheduling (policy)

= Handles data consistency (MSI
protocol)

6. Data Management

Distributed Shared Memory Consistency

MSI Protocol

A = A+B
« M: Modified
= S: Shared o &
. PU
- 1 lid \ GPU
nvali N N u
CPU CPU
N4
1 Leru @y
‘ N
Data A Data B

Dfsls] [mli]1] &=

6. Data Management

Distributed Shared Memory Consistency

MSI Protocol A = A+B
« M: Modified
« S: Shared
- I: Invalid @ @ @
o ¢

L o

Data A Data B
(sls] LT

s[t1]s] &=

)
.

Distributed Shared Memory Consistency

MSI Protocol A = A+B

= M: Modified
= S: Shared
« It Invalid @ @ GPU

CPU CPU
/A
1 GPU |§|
Q N
Data A Data B

RW (3)

(im] [s[i]s] «—

)
.

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
« CPU < GPU transfers

= Data transfer cost vs kernel offload benefit

6. Data Management

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
« CPU < GPU transfers

= Data transfer cost vs kernel offload benefit

Transfer cost modelling
= Bus calibration

— Can differ even for identical devices
— Platform’s topology

6. Data Management

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
« CPU < GPU transfers
= Data transfer cost vs kernel offload benefit

Transfer cost modelling
= Bus calibration

— Can differ even for identical devices
— Platform’s topology

Data-transfer aware scheduling
« Deque Model Data Aware (dmda) scheduling policy variants

« Tunable data transfer cost bias

— locality
— vs load balancing

6. Data Management

Data Prefetching

Task states
= Submitted
— Task inserted by the application
« Ready
— Task’s dependencies resolved
« Scheduled
— Task queued on a computing unit
= Executing
— Task running on a computing unit

6. Data Management

Data Prefetching

Task states
= Submitted
— Task inserted by the application
« Ready
— Task’s dependencies resolved
= Scheduled

— Task queued on a computing unit

= Executing
— Task running on a computing unit

Anticipate on the Scheduled — Executing transition
« Prefetch triggered ASAP after Scheduled state

6. Data Management

Data Prefetching

Task states
= Submitted
— Task inserted by the application
« Ready

— Task’s dependencies resolved

« Scheduled

— Task queued on a computing unit

= Executing
— Task running on a computing unit

Anticipate on the Scheduled — Executing transition
« Prefetch triggered ASAP after Scheduled state
« Prefetch may also be triggered by the application

6. Data Management

Data Interfaces

Multiple data types supported

[B N R

= Vector
= Matrix
= BCSR sparse matrix

int vector [NX];
starpu_data_handle_t handle;

starpu_vector_data_register(&handle,

NX,

sizeo

0
f

(

(uintptr_t)vector,
vector [0]));

6. Data Management

Data Interfaces

Multiple data types supported
= Vector
= Matrix
= BCSR sparse matrix

float matrix [NX«NY];
starpu_data_handle_t handle;

starpu_matrix_data_register(&handle, 0, (uintptr_t)matrix,
NX, NX, NY, sizeof(matrix[0]));

[B N R

6. Data Management

Data Interfaces

Multiple data types supported

o s W N e

= Vector
= Matrix
= BCSR sparse matrix

starpu_data_handle_t handle;

starpu_bcsr_data_register(&handle, 0, NNZ, NROW,
(uintptr_t)bcsr_matrix_data,

bcsr_matrix_indices ,
first_entry ,

bcsr_matrix_rowptr,

BLOCK_NROW, BLOCK_NCOL, sizeof(double));

6. Data Management

Data Interfaces

Multiple data types supported
= Vector
= Matrix
= BCSR sparse matrix
= Extensible data type set

— You can write your own, specifically tailored data type

6. Data Management

Data Interfaces

Multiple data types supported
= Vector
= Matrix
= BCSR sparse matrix

= Extensible data type set
— You can write your own, specifically tailored data type

« Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, ...)

6. Data Management

Partitioning

Splitting a piece of managed data into several handles
= Granularity adjustment

= Notion of filter

6. Data Management

Partitioning

Splitting a piece of managed data into several handles

= Granularity adjustment

= Notion of filter

Partition

1 int vector [NX];

2 starpu_data_handle_t handle;

3 starpu_vector_data_register(&handle, 0, (uintptr_t)vector,
4 NX, sizeof(vector[0]));

5

6/ /* Partition the vector in NB_PARTS sub—vectors %/

7 struct starpu_data_filter filter = {

8 .filter_func = starpu_vector_filter_block ,

9 .nchildren = NB_PARTS

0 };

1 starpu_data_partition(handle, &filter);

12

13| /* Data can only be accessed through sub—handles now x/

6. Data Management

Partitioning

Splitting a piece of managed data into several handles
= Granularity adjustment
= Notion of filter

Partition — Use

1 for (i=0; i<starpu_data_get_nb_children(handle); i++) {
2 /* Get subdata number i x/

3 starpu_data_handle_t sub_handle =

4 starpu_data_get_sub_data(handle, 1, i);
5

6 starpu_task_insert(

7 &scal_cl,

8 STARPU_RW, sub_handle,

9 STARPU_VALUE, &factor, sizeof(factor),
10 0);

u }

6. Data Management

Partitioning

Splitting a piece of managed data into several handles

= Granularity adjustment

= Notion of filter

Partition — Use — Unpartition

N o oA W N e

/+* Wait for submitted tasks to complete x/
starpu_task_wait_for_all();

/% Unpartition data */
starpu_data_unpartition(handle, 0);

/* Data can now be accessed through ’'handle’ only x/

6. Data Management

Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

6. Data Management

Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

© ©® N oA W N e

=oe e
N = O

=« Partition planning

int vector[NX];

starpu_data_handle_t handle;

starpu_vector_data_register(&handle, 0, (uintptr_t)vector,
NX, sizeof(vector[0]));

/+* Partition the vector in NB_PARTS sub—vectors x/
struct starpu_data_filter filter = {
.filter_func = starpu_vector_filter_block ,
.nchildren = NB_PARTS
+
starpu_data_handle_t children [NB_PARTS];
starpu_data_partition_plan(handle, &filter , children);

/* Data can only be accessed through sub—handles now x/

6. Data Management

Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

© ©® N oA W N e

=
= o

=« Partition planning

= Asynchronous partition inforcement

starpu_task_insert(&scal_cl,

STARPU_RW, handle,

STARPU_VALUE, &factorl, sizeof(factorl), 0);
starpu_data_partition_submit(handle, NB_PARTS, children);
for (i=0; i<NB_PARTS; i++) {

starpu_task_insert(&scal_cl,

STARPU_RW, children[i],
STARPU_VALUE, &factor2, sizeof(factor2),
0);

starpu_data_unpartition_submit(handle, NB_PARTS, children,
node) ;

starpu_task_insert(&scal_cl,
STARPU_RW, handle,
STARPU_VALUE, &factor3, sizeof(factor3), 0);

6. Data Management

Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer

= Define reduction operator

6. Data Management

Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer

= Define reduction operator

Define zero

1 void bzero_cpu(void xdescr[], void xcl_arg) {

2 double *v_zero = (double *)STARPU_VARIABLE_GET_PTR(descr
[on:

3 xv_zero = 0.0;

+ }

5

6 struct starpu_codelet bzero_cl = {

7 .cpu_funcs = { bzero_cpu, NULL },

8 .nbuffers =1

9 };

6. Data Management

Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer
= Define reduction operator

Define zero — Define op

1 void accumulate_cpu(void xdescr[], void xcl_arg) {

2 double *v_dst = (double #)STARPU_VARIABLE_GET_PTR(descr
[01):

3 double *v_src = (double x)STARPU_VARIABLE_GET_PTR(descr
(1

4 *v_dst = xv_dst + xv_src;

s}

6

7 struct starpu_codelet accumulate_cl = {

8 .cpu_funcs = { accumulate_cpu, NULL },

9 .nbuffers =1

0 };

6. Data Management

Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer
= Define reduction operator

Define zero — Define op — Reduce task contributions

1 starpu_variable_data_register(&accum_handle, -1,

2 NULL, sizeof(type));

3 starpu_data_set_reduction_methods (accum_handle,

4 &accumulate_cl, &bzero_cl);
5

6 for (b = 0; b < nblocks; b++)

7 starpu_task_insert(&dot_kernel_cl,

8 STARPU_REDUX, accum_handle,

9 STARPU_R, starpu_data_get_sub_data(vl, 1, b),
10 STARPU_R, starpu_data_get_sub_data(v2, 1, b),
11 0);

6. Data Management

Commutative Write Accesses

= Write accesses enforce sequential consistency by default

— To strong for some kind of workloads
— N-body, unstructured meshes

6. Data Management

Commutative Write Accesses

= Write accesses enforce sequential consistency by default

— To strong for some kind of workloads
— N-body, unstructured meshes

/
|

Tasks

‘|l
e
i

\CImm

7

/

/

L
£

6. Data Management

Commutative Write Accesses

= Write accesses enforce sequential consistency by default

— To strong for some kind of workloads
— N-body, unstructured meshes

. Commute: allows a set of tasks to modify a buffer in any order

1 starpu_task_insert(&cll ,

2 STARPU_R, handleO,

3 STARPU_RW, handle,

4 0);

s/ starpu_task_insert(&cl2,

6 STARPU_R, handlel ,

7 STARPU_RW|STARPU_COMMUTE , handle,
8

9

0);

starpu_task_insert(&cl2,
10 STARPU_R, handle2,
11 STARPU_RW | STARPU_COMMUTE , handle,
12 0);
13 starpu_task_insert(&cl3,
14 STARPU_R, handle3,
15 STARPU_RW, handle,
16 0);

6. Data Management

Analysis and Monitoring

-
-
&ZW 0. Aumage — StarPU Runtime

Feedback mechanisms

Online Tools
= Statistics
= Visual debugging

Offline Tools

= Trace-based analysis

7. Analysis and Monitoring

Offline Trace-Based Feedback

= FxT trace collection

= Trace analysis and display

— VITE Gantt
— Graphviz DAG
— R plots

7. Analysis and Monitoring

Offline Feedback — Trace Analysis

Automatically generated
= Dependency graph (DAG)

= Activity diagramm (GANTT)
— Visualize with ViTE

™| VITE :: dmda-lu-16k-fx5800.trace

No arrows No events

84 77

—ox|
File View Preferences Help

[/ RE[QQ AW~ a2

IMEMNOD

MEMNDD.

g
Scale containers/states: ~___| Change position: [> Zoom: (100% ;l

-
l 01240/— FAumage — StarPU Runtime —

Offline Feedback — Kernel Model

Display the codelet performance models recorded by StarPU
= Command-line tool starpu_perfmodel_display
= History-based models

= Regression-based models

7. Analysis and Monitoring

Offline Feedback — Kernel Model

Display the codelet performance models recorded by StarPU
= Command-line tool starpu_perfmodel_display
= History-based models

= Regression-based models

$ starpu_perfmodel_display —s starpu_slu_lu_model_11

hash size mean (us) stddev (us)

1

2

3 performance model for cpuO_parallell_impl0

4

5 aabd4ef7 4194304 3.055501e+405 5.804822e+04

Offline Feedback — Kernel Model Characteristics

100

10

Time (ms)

041

0.01

Model for codelet starpu_slu_lu_model_11.averell1

A:lerage epu'_lnpl_o AL ') ' !
Average cuda_0_impl_0 -~
Average cuda_1_impl_0 +--#--

10 100 1000 10000 100000 1e+06 1e+07
Total data size

7. Analysis and Monitoring

1e+08

1e+09

Offline Feedback — Kernel Model Regression Fitness

Model for codelet non_linear_memset_regression_based

10 r T T T
Profiling cpu0_ncore0_impl0 +
Non-Linear Regression cpu0_ncore0_impl0
Average cpu0_ncore0_impl0
1 4

— 01 J
(%)
E
@
E
= 0.01 1
0.001 B
0.0001
1000 10000 100000 le+06 1e+07 le+08

Total data size

7. Analysis and Monitoring

Offline Feedback — Synthetic Kernels’ Behaviour

1e+08 T T

le+87 [

1e+86 [

data size (B)

16600

1608

160008 [

Data trace

DPOTRF_TRSH
DGEMM

8.801 8.01 a.1 1

tasks size (ns)

7. Analysis and Monitoring

1e

1608

Distributed Computing

-
-
&Z/"a’- 0. Aumage — StarPU Runtime

Distributed Support

Sequential Task Flow Paradigm on Clusters
Each node unrolls the sequential task flow

Data«++Node Mapping
= Provided by the application
= Can be altered dynamically

8. Distributed Computing

node0 node1

node2

Distributed Support

Sequential Task Flow Paradigm on Clusters
Each node unrolls the sequential task flow

Inter-node dependence management
= Inferred from the task graph edges

= Automatic Isend and Irecv calls

8. Distributed Computing

Distributed Support

Sequential Task Flow Paradigm on Clusters
Each node unrolls the sequential task flow

Task<>Node Mapping
=« Inferred from data location:
— Tasks move to data they modify

= No global scheduling

= No synchronizations

Optimization
= Local DAG pruning

8. Distributed Computing

nodeo‘node1

node2

node3

Distributed Scalability Study Results

Chameleon linear algebra library (Inria Team HiePACS)
= Heterogeneous cluster: 1152 CPU cores+288 GPUs

100 —

TFlop/s
>

DGEMM peak

STF / Chameleon —=a—

PTG /DPLASMA —e—

CPU-only DGEMM peak
CPU-only STF / Chameleon -
CPU-only PTG / DPLASMA -
GPU-only MPI/ Scal APACK .-

0 100000 200000 300000 400000

Matrix order (N)
IEEE TPDS Paper:
DOI: 10.1109/TPDS.2017.2766064 — https://hal.inria.fr/hal-01618526

1

8. Distributed Computing

Interoperability and Composition

-
-
hw 0. Aumage — StarPU Runtime

Composing Multiple Codes

Rationale

9. Interoperability and Composition

Composing Multiple Codes

Rationale

= Sharing computing resources. . .

9. Interoperability and Composition

Composing Multiple Codes

Rationale
= Sharing computing resources. . .

= ... among multiple DAGs

9. Interoperability and Composition

Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

9. Interoperability and Composition

Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

Scheduling Contexts

Context 2

9. Interoperability and Composition

Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

Scheduling Contexts

= Map DAGs on subsets of computing units
Context 2

9. Interoperability and Composition

Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

Scheduling Contexts

= Map DAGs on subsets of computing units
Context 2

=« Isolate competing kernels or library calls
— OpenMP kernel, Intel MKL, etc.

9. Interoperability and Composition

Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

Scheduling Contexts

= Map DAGs on subsets of computing u