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1
Runtime Systems for Heterogeneous Plat-
forms



Hardware Evolution

More capabilities, more complexity

Display
Higher resolutions
2D acceleration
3D rendering

Networking
Processing o�oad
Zero-copy transfers
Hardware multiplexing

I/O
RAID
SSD vs Disks
Network-attached disks
Parallel file systems
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Computing Hardware?



Technology Dilemma for the Application Programmer

Stay conservative?

Only use long established features
– Display: Basic graphics or terminal output
– Networking: Unix systems calls, TCP sockets
– I/O: Unix systems calls, read/write

Under-used hardware?
Low performance?
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Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?

E�ciency
Convenience
Portability?

– What if the application is used on di�erent hardware?
Adaptiveness?

– What if hardware resource availability/capacity is higher? Lower?
Cost?

– Is it worthwhile to use such “specific” features?
Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?
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Technology Dilemma for the Application Programmer

Answer: Use runtime systems!
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1.1
Principles of Runtime Systems



Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

The Role(s) of Runtime Systems

Portability

Control

Adaptiveness

Optimization
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Examples of Runtime Systems

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

I/O
MPI-IO
HDF5 libraries
Database engines
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The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters
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The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution
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The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with e�ective hardware aptitude and performance level
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The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation o�oad
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer
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1.2
Runtime Systems for Computing



Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster
Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together
Not a new idea. . .
. . . but definitely the key performance factor now
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Heterogeneous Computing Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization

Distributed cores, discrete accelerators
– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Overall increased parallelism diversity
– Multiprocessors, multicores
– Vector processing extensions
– Accelerators
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Example: CPU vs GPU Hardware

Multiple strategies for multiple purposes

CPU
– Strategy

– Large caches
– Large control

– Purpose
– Complex codes, branching
– Complex memory access patterns

– World Rally Championship car
GPU

– Strategy
– Lot of computing power
– Simplified control

– Purpose
– Regular data parallel codes
– Simple memory access patterns

– Formula One car
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CPU 

GPU 

Control 
ALU ALU 

ALU ALU 

Cache 

DRAM 

DRAM 



Accelerators
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

GPU 

DRAM 

Control 

Control 
Scalar Cores 

(Streaming Processors) 

Streaming Multiprocessor 

R1 + R2 

R5 / R2 

Scalar Cores 



Accelerators
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

SIMT is distinct from SIMD
Allows flows to diverge
. . . but better avoid it!

GPU 

Control 
Scalar Cores 

(Streaming Processors) 

Streaming Multiprocessor 

R1 + R2 

 

...
if(cond){

  ...
  ...
  ...

} else {
  ...
  ...
}
...



Problematics

Unified computing runtime system for heterogeneous platforms
Portability of performance

– Abstraction
– Adaptiveness
– Execution Control
– Optimization

Need a way to abstract application execution. . .

. . . into elementary, manageable objects
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1.3
Abstracting Application Workload



Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – StarPU Runtime – 1. Runtime Systems 23

Examples
– OpenMP parallel regions
– libpthread
– C++ threads
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Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application 

Computation 
Threads 

CPU 

Parallel Platform 

CPU 

CPU 



Threads: Resources vs Needs

Lack of abstraction
Threads express explicit resource request
instead of application requirements
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Computation 
Threads 



Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads
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Threads: Lack of Semantics

What does a thread really do?
Resource usage?
Inter-thread constraints
Chaining constraints, ordering?

Planning Issues
Unbounded computation
System-controlled context switches

Consequences
Heavy synchronizations: barriers
User-managed fine-grain synchronizations: locks, mutexes
Little to no help from runtime system
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Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU
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CPU 
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Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?
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Threads 

CPU 

Parallel Platform 

CPU 

CPU 

Time 

Network / IO Request 

MPI_SEND 

Join Fork 



Threads: Outcome

Perhaps not the right semantics for end-user application development

Over-constrained concept for application programming

Awkward object to manipulate at the runtime system level

Not well suited to leverage theoretical scheduling results
– Completion?
– Other metrics?
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Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies
– No side e�ect (no hidden dependencies)

æ Degrees of Freedom in realizing the potential parallelism

Shared (often fixed) pool of worker threads
æ Decoupled engine, to realize a potentially parallel execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 30

A = A+B 

A B 

A 

Task = an « elementary » computation + dependencies 

Input dependencies 

Output dependencies 

Computation kernel 



Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies
– No side e�ect (no hidden dependencies)

æ Degrees of Freedom in realizing the potential parallelism

Shared (often fixed) pool of worker threads
æ Decoupled engine, to realize a potentially parallel execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 30

A = A+B 

A B 

A 

Task = an « elementary » computation + dependencies 

Input dependencies 

Output dependencies 

Computation kernel 



Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies
– No side e�ect (no hidden dependencies)

æ Degrees of Freedom in realizing the potential parallelism

Shared (often fixed) pool of worker threads
æ Decoupled engine, to realize a potentially parallel execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 30

A = A+B 

A B 

A 

Task = an « elementary » computation + dependencies 

Input dependencies 

Output dependencies 

Computation kernel 



Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)
The runtime remains free to decide the amount of resources to execute a task

Rationalize resource consumption
– Thread and associated stack reused among several tasks

Enforce separation of concerns
– Management code brought out of the application

Open the way to resource allocation optimization
– Cross-cutting view of the application requirements
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Tasks: Resources Miss-subscription?

The runtime system may initialize a pool of worker threads according to the
hardware capabilities

The application submit tasks independently to the runtime, independently of the
hardware capabilities

Tasks submitted by the application according to its natural algorithm
– Abstraction with respect to hardware

Workers allocated according to hardware resource, topology
– Typically one thread per core or per hardware thread

Operating system scheduler interference largely eliminated
– No competition between worker threads
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Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application
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Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield
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Tasks: Networking and I/O Issues?

Potential 1-to-1 relationship between tasks and network/IO requests

Network/IO request may start as soon as the task producing the data has
been completed

Tasks may be triggered as the result of network/IO requests completion

Significant di�erence with fork-join models, MPI+X
– Transparent interoperability
– Avoid deferred network/IO requests until next join
– Avoid custom network/IO requests management inside the application code
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Tasks: Outcome

Task = Characterizable work

Well-defined
– Workload
– Completion
– Dependencies
– Similar to the pure function concept from Functional programming domain

Suitable object for modelling
– Constraints
– Degrees of freedom
– Large corpus of task scheduling theory

Enforcing separation of concerns
– Application specialist
– Kernel(s) specialist
– Scheduling theoretician specialist
– Runtime-system specialist
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Programming Modern Platforms using Tasks

See second part: Programming Modern Platforms with the StarPU Task-Based
Runtime System

Rich set of existing task-based programming models and associated runtime
systems

DuctTeip
Legion
OCR
OpenMP 4.x
OmpSs
ParalleX
PaRSEC
Swan
Uintah/Kokkos
XKaapi
...
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Heterogeneous Parallel Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores
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Task Scheduling
Task

Elementary computation
– Some kernel

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies

æ Degrees of Freedom in realizing the potential parallelism

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)
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StarPU Programming Model: Sequential Task Flow

Express parallelism...
... using the natural program flow

Submit tasks in the sequential flow of the program...
... then let the runtime schedule the tasks asynchronously
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Sequential Task Flow Graph Building

Example: Cholesky Decomposition
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for (j = 0; j < N; j++) {

POTRF (

RW,

A[j][j]);

for (i = j+1; i < N; i++)

TRSM (

RW,

A[i][j],

R,

A[j][j]);

for (i = j+1; i < N; i++) {

SYRK (

RW,

A[i][i],

R,

A[i][j]);

for (k = j+1; k < i; k++)

GEMM (

RW,

A[i][k],

R,

A[i][j],

R,

A[k][j]);

}

}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK
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for (j = 0; j < N; j++) {

task_insert( POTRF (RW,A[j][j]) );

for (i = j+1; i < N; i++)

task_insert( TRSM (RW,A[i][j], R,A[j][j]) );

for (i = j+1; i < N; i++) {

task_insert( SYRK (RW,A[i][i], R,A[i][j]) );

for (k = j+1; k < i; k++)
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R,A[i][j], R,A[k][j]) );

}

}

wait_for_all();
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StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
Allocating computing resources
Enforcing dependency constraints
Handling data transfers

Adaptiveness
A single DAG enables multiple schedulings
A single DAG can be mapped on multiple platforms
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M. GPU M. GPU 
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Example: SCHNAPS, Implicit kinetic schemes

SCHNAPS Solver (Inria TONUS)
Example of a task graph submitted to StarPU
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Heterogeneous Showcase with Chameleon + StarPU

QR kernel properties
Kernel SGEQRT
CPU: 9 GFlop/s GPU: 30 GFlop/s Speed-up: 3
Kernel STSQRT
CPU: 12 GFlop/s GPU: 37 GFlop/s Speed-up: 3
Kernel SOMQRT
CPU: 8.5 GFlop/s GPU: 227 GFlop/s Speed-up: 27
Kernel SSSMQ
CPU: 10 GFlop/s GPU: 285 GFlop/s Speed-up: 28

Consequences
Task distribution

– SGEQRT: 20% Tasks on GPU
– SSSMQ: 92% tasks on GPU

Taking advantage of heterogeneity!
– Only do what you are good for
– Don’t do what you are not good for
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3
Programming with StarPU



Terminology

Codelet
Task
Data handle

O. Aumage – StarPU Runtime – 3. Programming with StarPU 49



Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks
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Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

R W



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

R W



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

R W



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W Task 1 waits for input data



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W

R

Task 1 receives its input data



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W Task 1 is running



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output
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Definition: A Data Handle

A Data Handle. . .
. . . designates a piece of data managed by StarPU
. . . is typed (vector, matrix, etc.)
. . . can be passed as input/output for a Task
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Elementary API

Declaring a codelet
Declaring and Managing Data
Writing a Kernel Function
Submitting a task
Waiting for submitted tasks
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Declaring a Codelet

Define a struct starpu_codelet

Plug the kernel function
– Here: scal_cpu_func

Declare the number of data pieces used by the kernel
– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W
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Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func
Declare the number of data pieces used by the kernel

– Here: A single vector
Declare how the kernel accesses the piece of data
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1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . n b u f f e r s = 1 ,
4 . modes = { STARPU_RW } ,
5 } ;



Declaring and Managing Data

Put data under StarPU control

Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control
Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control
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1 f l o a t v e c t o r [NX ] ;
2 /⇤ . . . f i l l data . . . ⇤/

3

4 starpu_data_handle_t v e c t o r _ h a n d l e ;
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9

10 s ta rpu_data_unreg i s t e r ( v e c t o r _ h a n d l e ) ;



Writing a Kernel Function

Every kernel function has the same C prototype

Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling
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1 vo id sca l_cpu_func ( vo id ⇤ b u f f e r s [ ] , vo id ⇤ c l _ a r g ) {
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9 uns igned i ;
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11 v e c t o r [ i ] ⇤= ⇤ p t r _ f a c t o r ;
12 }



Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm
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Waiting for Submitted Task Completion

Tasks are submitted non-blockingly

Wait for all submitted tasks to complete their work
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1 /⇤ non≠b l o c k i n g t a s k submi t s ⇤/

2 s t a r p u _ t a s k _ i n s e r t ( . . . ) ;
3 . . .
4

5 /⇤ wa i t f o r a l l t a s k submi t t ed so f a r ⇤/

6 s t a r p u _ t a s k _ w a i t _ f o r _ a l l ( ) ;
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t v e c t o r _ h a n d l e ;
4

5 /⇤ . . . f i l l v e c t o r . . . ⇤/

6

7 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
8 ( u i n t p t r _ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) )

;
9
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14 0) ;
15

16 s ta rpu_task_wa i t_ fo r_a l l ( ) ;
17 s ta rpu_data_unreg i s t e r ( v e c t o r _ h a n d l e ) ;
18

19 /⇤ . . . d i s p l a y v e c t o r . . . ⇤/



Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms

Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels

Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels
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1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 sca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . openc l_ func = { sca l_cpu_openc l , NULL } ,
5 . cuda_func = { scal_cpu_cuda , NULL } ,
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7 . modes = { STARPU_RW } ,
8 } ;
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4

5 . . .
6 }
7
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StarPU Internal Structure
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GPUs SPUs ... 
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StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.
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StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
Providing more input to the scheduler. . .
. . . can lead to better scheduling decisions

What kind of information?
Relative importance of tasks

– Priorities
Cost of tasks

– Codelet models
Cost of transferring data

– Bus calibration
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Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application
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Task Mapping using a Performance Model

O. Aumage – StarPU Runtime – 5. Scheduling Policies 74

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores
CPU

GPU 2

GPU 1

? Time
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Using codelet performance models
– Kernel calibration on each available computing device
– Raw history model of kernels’ past execution times
– Refined models using regression on kernels’ execution times history

Model parameter(s)
– Data size
– User-defined parameters



O. Aumage – StarPU Runtime 76

6
Data Management



StarPU Heterogeneous Execution Model / Data Management
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Handles scheduling (policy)
Handles data consistency (MSI
protocol)
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MSI Protocol

M: Modified
S: Shared
I: Invalid
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Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
CPU ¡ GPU transfers
Data transfer cost vs kernel o�oad benefit

Transfer cost modelling
Bus calibration

– Can di�er even for identical devices
– Platform’s topology

Data-transfer aware scheduling
Deque Model Data Aware (dmda) scheduling policy variants
Tunable data transfer cost bias

– locality
– vs load balancing
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Data Prefetching

Task states
Submitted

– Task inserted by the application
Ready

– Task’s dependencies resolved
Scheduled

– Task queued on a computing unit
Executing

– Task running on a computing unit

Anticipate on the Scheduled æ Executing transition
Prefetch triggered ASAP after Scheduled state

Prefetch may also be triggered by the application
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Data Interfaces

Multiple data types supported
Vector
Matrix
BCSR sparse matrix

Extensible data type set
– You can write your own, specifically tailored data type

Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, . . . )
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1 i n t v e c t o r [NX ] ;
2 starpu_data_handle_t hand l e ;
3

4 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (&handle , 0 , ( u i n t p t r _ t ) ve c to r ,
5 NX, s i z e o f ( v e c t o r [ 0 ] ) ) ;
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1 f l o a t ma t r i x [NX⇤NY ] ;
2 starpu_data_handle_t hand l e ;
3

4 s ta rpu_mat r i x_data_reg i s t e r (&handle , 0 , ( u i n t p t r _ t ) matr ix ,
5 NX , NX, NY, s i z e o f ( m a t r i x [ 0 ] ) ) ;
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1 . . .
2 starpu_data_handle_t hand l e ;
3

4 s t a r pu_ bcs r _ dat a_ r eg i s t e r (&handle , 0 , NNZ, NROW,
5 ( u i n t p t r _ t ) bcs r_matr ix_data ,
6 b c s r _ m a t r i x _ i n d i c e s , bcs r_matr i x_rowptr ,

f i r s t _ e n t r y ,
7 BLOCK_NROW, BLOCK_NCOL, s i z e o f ( double ) ) ;
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Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition æ Use æ Unpartition
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1 i n t v e c t o r [NX ] ;
2 starpu_data_handle_t hand l e ;
3 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (&handle , 0 , ( u i n t p t r _ t ) ve c to r ,
4 NX, s i z e o f ( v e c t o r [ 0 ] ) ) ;
5

6 /⇤ P a r t i t i o n the v e c t o r i n NB_PARTS sub≠v e c t o r s ⇤/

7 s t r u c t s t a r p u _ d a t a _ f i l t e r f i l t e r = {
8 . f i l t e r _ f u n c = s t a r p u _ v e c t o r _ f i l t e r _ b l o c k ,
9 . n c h i l d r e n = NB_PARTS

10 } ;
11 s t a r p u _ d a t a _ p a r t i t i o n ( handle , & f i l t e r ) ;
12

13 /⇤ Data can o n l y be a c c e s s e d through sub≠h a n d l e s now ⇤/



Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition æ Use

æ Unpartition
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1 f o r ( i =0; i <starpu_data_get_nb_chi ldren ( hand l e ) ; i ++) {
2 /⇤ Get subdata number i ⇤/

3 starpu_data_handle_t sub_handle =
4 starpu_data_get_sub_data ( handle , 1 , i ) ;
5

6 s t a r p u _ t a s k _ i n s e r t (
7 &s c a l _ c l ,
8 STARPU_RW , sub_handle ,
9 STARPU_VALUE , &f a c t o r , s i z e o f ( f a c t o r ) ,

10 0) ;
11 }



Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition æ Use æ Unpartition
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1 /⇤ Wait f o r submi t t ed t a s k s to complete ⇤/

2 s ta rpu_task_wa i t_ fo r_a l l ( ) ;
3

4 /⇤ U n p a r t i t i o n data ⇤/

5 s ta rpu_data_unpar t i t i on ( handle , 0) ;
6

7 /⇤ Data can now be a c c e s s e d through ’ hand l e ’ o n l y ⇤/



Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

Partition planning
Asynchronous partition inforcement
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1 i n t v e c t o r [NX ] ;
2 starpu_data_handle_t hand l e ;
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11 starpu_data_handle_t c h i l d r e n [NB_PARTS ] ;
12 s t a r p u _ d a t a _ p a r t i t i o n _ p l a n ( handle , &f i l t e r , c h i l d r e n ) ;
13
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Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps
Partition planning
Asynchronous partition inforcement
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1 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
2 STARPU_RW , handle ,
3 STARPU_VALUE , &f a c t o r 1 , s i z e o f ( f a c t o r 1 ) , 0) ;
4 s t a r p u _ d a t a _ p a r t i t i o n _ s u b m i t ( handle , NB_PARTS, c h i l d r e n ) ;
5 f o r ( i =0; i <NB_PARTS; i ++) {
6 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
7 STARPU_RW , c h i l d r e n [ i ] ,
8 STARPU_VALUE , &f a c t o r 2 , s i z e o f ( f a c t o r 2 ) ,
9 0) ;

10 }
11 s t a r p u _ d a t a _ u n p a r t i t i o n _ s u b m i t ( handle , NB_PARTS, c h i l d r e n ,

node ) ;
12 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
13 STARPU_RW , handle ,
14 STARPU_VALUE , &f a c t o r 3 , s i z e o f ( f a c t o r 3 ) , 0) ;



Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero æ Define op æ Reduce task contributions
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1 vo id bzero_cpu ( vo id ⇤ d e s c r [ ] , vo id ⇤ c l _ a r g ) {
2 double ⇤ v_zero = ( double ⇤) STARPU_VARIABLE_GET_PTR ( d e s c r

[ 0 ] ) ;
3 ⇤ v_zero = 0 . 0 ;
4 }
5

6 s t r u c t s ta rpu_code l e t b z e r o _ c l = {
7 . cpu_funcs = { bzero_cpu , NULL } ,
8 . n b u f f e r s = 1
9 } ;



Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero æ Define op

æ Reduce task contributions
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1 vo id accumulate_cpu ( vo id ⇤ d e s c r [ ] , vo id ⇤ c l _ a r g ) {
2 double ⇤ v_dst = ( double ⇤) STARPU_VARIABLE_GET_PTR ( d e s c r

[ 0 ] ) ;
3 double ⇤ v_src = ( double ⇤) STARPU_VARIABLE_GET_PTR ( d e s c r

[ 1 ] ) ;
4 ⇤ v_dst = ⇤ v_dst + ⇤ v_src ;
5 }
6

7 s t r u c t s ta rpu_code l e t accumu la te_c l = {
8 . cpu_funcs = { accumulate_cpu , NULL } ,
9 . n b u f f e r s = 1

10 } ;



Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero æ Define op æ Reduce task contributions
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1 s t a r p u _ v a r i a b l e _ d a t a _ r e g i s t e r (&accum_handle , ≠1,
2 NULL , s i z e o f ( type ) ) ;
3 starpu_data_set_reduct ion_methods ( accum_handle ,
4 &accumu la te_c l , &b z e r o _ c l ) ;
5

6 f o r ( b = 0 ; b < n b l o c k s ; b++)
7 s t a r p u _ t a s k _ i n s e r t (& dot_ke rne l_c l ,
8 STARPU_REDUX , accum_handle ,
9 STARPU_R , starpu_data_get_sub_data ( v1 , 1 , b ) ,

10 STARPU_R , starpu_data_get_sub_data ( v2 , 1 , b ) ,
11 0) ;



Commutative Write Accesses

Write accesses enforce sequential consistency by default
– To strong for some kind of workloads
– N-body, unstructured meshes

Commute: allows a set of tasks to modify a bu�er in any order
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1 s t a r p u _ t a s k _ i n s e r t (& c l1 ,
2 STARPU_R , handle0 ,
3 STARPU_RW , hand le ,
4 0) ;
5 s t a r p u _ t a s k _ i n s e r t (& c l2 ,
6 STARPU_R , handle1 ,
7 STARPU_RW | STARPU_COMMUTE , hand le ,
8 0) ;
9 s t a r p u _ t a s k _ i n s e r t (& c l2 ,

10 STARPU_R , handle2 ,
11 STARPU_RW | STARPU_COMMUTE , hand le ,
12 0) ;
13 s t a r p u _ t a s k _ i n s e r t (& c l3 ,
14 STARPU_R , handle3 ,
15 STARPU_RW , hand le ,
16 0) ;
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7
Analysis and Monitoring



Feedback mechanisms

Online Tools
Statistics
Visual debugging

O�ine Tools
Trace-based analysis
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O�ine Trace-Based Feedback

FxT trace collection
Trace analysis and display

– ViTE Gantt
– Graphviz DAG
– R plots
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O�ine Feedback – Trace Analysis

Automatically generated
Dependency graph (DAG)
Activity diagramm (GANTT)

– Visualize with ViTE
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O�ine Feedback – Kernel Model

Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display
History-based models
Regression-based models
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Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display
History-based models
Regression-based models
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1 $ s t a r p u _ p e r f m o d e l _ d i s p l a y ≠s starpu_s lu_lu_mode l_11
2

3 pe r fo rmance model f o r c p u 0 _ p a r a l l e l 1 _ i m p l 0
4 # hash s i z e mean ( us ) s tddev ( us ) n
5 aa6d4e f7 4194304 3.055501 e+05 5.804822 e+04 48



O�ine Feedback – Kernel Model Characteristics

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 91



O�ine Feedback – Kernel Model Regression Fitness
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O�ine Feedback – Synthetic Kernels’ Behaviour

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 93



O. Aumage – StarPU Runtime 94

8
Distributed Computing



Distributed Support
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Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Data¡Node Mapping
Provided by the application
Can be altered dynamically

node1node0 node3node2



Distributed Support

O. Aumage – StarPU Runtime – 8. Distributed Computing 96

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Inter-node dependence management
Inferred from the task graph edges
Automatic Isend and Irecv calls

POTRF

GEMM

TRSM

SYRK

Isend

Irecv

node1

node0



Distributed Support
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Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task¡Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Optimization
Local DAG pruning

node1node0 node3node2

Irecv

Node 1



Distributed Scalability Study Results

Chameleon linear algebra library (Inria Team HiePACS)
Heterogeneous cluster: 1152 CPU cores+288 GPUs
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IEEE TPDS Paper:
DOI: 10.1109/TPDS.2017.2766064 — https://hal.inria.fr/hal-01618526
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9
Interoperability and Composition



Composing Multiple Codes

Rationale

Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context
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Contexts: Dynamic Resource Management
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Interoperability

How to Make Runtimes, Libs Cooperate?
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Interoperability

How to Make Runtimes, Libs Cooperate?

Project INTERTWinE (EU H2020, 3-years, 2015-2018)
– Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
– Networking APIs: MPI, GASPI
– Libraries: Plasma, DPlasma
– Applications

Cooperative resource allocation and management
– Cores
– Accelerators
– Memory
– Pinned memory segments
– ...

www.intertwine-project.eu
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INTERTWinE

• Co-design methodology
• Define interoperability requirements, 

implement+evaluate, drive new requirements
• Work with real applications

• Computational Resource Management
• Coordinated resource sharing for interoperability 

between runtime systems, libraries

• Distributed Data Management
• Scalable, transparent data sharing on 

heterogeneous, distributed memory hierarchies 

• Engagement with HPC community
• Standards bodies: OpenMP, MPI, GASPI
• Courses, workshops and Best Practice Guides 

http://www.intertwine-project.eu

Interoperability between programming models
for scalable performance on extreme-scale supercomputers

Follow INTERTWinE on Twitter: @intertwine_eu

Linear Algebra

Big Data analytics

CFD

Complex Fluids

Space Plasma



Computational Resource Management
Objectives

• Implement a Resource Management API to share computing resources 
between parallel applications, libraries and runtime systems

Parallel	Application

TBB	RTL

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

StarPU	RTL OmpSs	RTLOpenMP

Dynamic	Resource	Sharing lendborrow

User	APIs

RTL	APIs

MKL
OpenCL	Offload

Native		Offload	&	RE
Pause/Resume

PLASMA
OpenCL		Off.
Nat.		Off.	&	RE
Pause/Resume

Chameleon

Native	Offload	&	RE
Pause/Resume
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Motivation
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• Fork-join pattern 

• No over-subscription, but most CPUs 
underutilized on sequential parts
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Motivation 
Parallel application + parallel libraries

Parallel	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

dpotrf()

• Uncoordinated access to CPU cores

• Oversubscription
• Cache pollution
• Higher number of context switches
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Computational Resource Sharing

• Multiple codes compete for CPU cores, accelerator devices on cluster nodes
• Application threads
• Numerical libraries threads
• Runtime systems threads
• Communication library threads

• Interference leads to resource over-subscription or under-subscription on cluster nodes
• Interoperability?

• Need coordinated resource sharing:
• Ability to express general resource needs
• Ability to express dynamic resource requirements:

• computational-heavy periods, idleness periods

à INTERTWinE Resource Management APIs



Resource Manager Overview

• Implement a Resource Manager to share CPU resources between 
parallel application, libraries and runtime systems

Parallel	Application

TBB	RTL

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

StarPU	RTL OmpSs	RTLOpenMP

Dynamic	Resource	Sharing lendborrow

User	APIs

RTL	APIs

MKL
OpenCL	Offload

Native		Offload	&	RE
Pause/Resume

PLASMA
OpenCL		Off.
Nat.		Off.	&	RE
Pause/Resume

Chameleon

Native	Offload	&	RE
Pause/Resume



Resource Manager APIs
Native offload and resource enforcement API

Coordinated execution of a parallel library kernel from a parallel application



Resource Manager APIs
Native offload and resource enforcement API

Application PLASMA OmpSs

dgemm()

0 1 2 3 4 5

CPU	USAGE

off(ker,	 mask))

Coordinated execution of a parallel library kernel from a parallel application



• Each runtime has its own (similar) asynchronous API:
• Nanos6

void nanos_spawn_function(
void (*function)(void *),
void *args,
void (*completion_callback)(void *),
void *completion_args,
char const *label,
cpu_set_t *cpu_mask)

• StarPU
void starpurm_spawn_kernel_on_cpus_callback(

void *data,
void(*f)(void *),
void *args,
hwloc_cpuset_t cpuset,
void(*cb_f)(void *),
void *cb_args)

Resource Manager APIs
Native  offload and resource enforcement API



• MatMul: 16 CPUs
• Outermost task: block size 4K, 4 CPUs assigned to each task
• Innermost task: block size 512 bytes

• When there is only one level of tasks, high performance is not 
achieved until matrix is very big

Resource Manager APIs
Performance evaluation of Native (and OpenCL) offloading API



Resource Manager APIs
Dynamic Resource Sharing (DRS)

Application PLASMA
(OpenMP)

MKL
(TBB)

dgemm()

0 1 2 3 4 5

CPU	USAGEDRS

borrow()

lend	() lend	()

reclaim()
borrow()

enable()

disable
dpotrf()

lend() enable()

lend()



Ø See StarPU dynamic resource management animation

Resource Manager APIs
Dynamic Resource Sharing (DRS)



Accelerator Resource Management 

• Dynamic Resource Sharing API extended for devices
• Device sharing routines

• Lend/Reclaim device
• Acquire/Return device
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Accelerator Resource Management 

• Dynamic Resource Sharing API extended for devices
• Device sharing routines

• Lend/Reclaim device
• Acquire/Return device

• StarPU’s Resource Manager implementation extended to 
support devices
• Device types supported

• CUDA devices
• OpenCL devices
• (Xeon Phi KNC accelerator devices, …)

• Dynamic notifications
• Device becoming idle, from the runtime point of view
• Device becoming needed, from the runtime point of view
• Could be interfaced with DLB as for the CPU support.



INTERTWinE – Resource Management APIs

• Exascale Scheme
• Parallel application + Parallel libraries

• Need for coordinated access to computing resources
• Avoid undersubscription, oversubscription, idleness

• Interoperability



INTERTWinE – Resource Management APIs

• Exascale Scheme
• Parallel application + Parallel libraries

• Need for coordinated access to computing resources
• Avoid undersubscription, oversubscription, idleness

• Interoperability

INTERTWinE Resource Management APIs
• Kernel offload and resource enforcement APIs
• Native & via OpenCL

• Dynamic resource sharing API
• (Pause/Resume API)



INTERTWinE:
Programming Model INTERoperability ToWards Exascale

Visit http://www.intertwine-project.eu to find out about our:

• Best Practice Guides:
• Writing GASPI-MPI Interoperable Programs 
• MPI + OpenMP Programming
• MPI + OmpSs Interoperable Programs
• Open MP/OmpSs/StarPU + Multi-threaded Libraries Interoperable Programs

• “Developer Hub” of resources for developers & application users

…and to sign up for the latest news from INTERTWinE at
http://www.intertwine-project.eu/newsletter

http://www.intertwine-project.eu



O. Aumage – StarPU Runtime 104

10
Advanced Scheduling Topics



Multicore CPUs: Parallel Tasks
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Multicore CPUs: Parallel Tasks (T. Cojean)

Kernel sweet spots: example with Cholesky factorization kernels
(1x Xeon E5-2680v3 2.5GHz 12 cores)
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Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 107
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Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads

– Black-box mode

Locality enforcement in NUMA context
Combined worker threads
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Submission-side Task Flow Optimizations

Global task-graph pruning in distributed computing sessions
Memory subscription control
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Distributed Scalability Study Results

Chameleon linear algebra library (Inria Team HiePACS)
Heterogeneous cluster: 1152 CPU cores+288 GPUs
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Distributed Support
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Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task¡Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Optimization
Local DAG pruning

node1node0 node3node2

Irecv

Node 1



Global Task-Graph Pruning Issue
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Unbounded Task Submission Issue
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Implementing Some Scheduling Lookahead Window

Control of the task submission flow

Memory tracking
– Account the memory subscription

Task submission throttling
– Blocking mechanism of the task submission flow
– Allows the task submission to be controlled by an external criteria

A control policy which uses the memory tracking to throttle the task
submission flow
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Memory Behaviour Without Memory Control
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Memory Behaviour With Memory Control
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Advanced Data Management Topics



Advanced Data Management

Heterogeneous data layout
Multiformat support

Large workloads
Out-of-core support
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Data Layout

Heterogeneous platforms
Heterogeneous data layout requirements
Example:

– Arrays of Structures (AoS), for CPU cache locality
– vs Structures of Arrays (SoA), for GPU coalesced memory accesses
– vs Arrays of Structures of Arrays (AoSoA), for MIC/Xeon Phi
– . . . any other data layout

StarPU enables Multiformat kernel implementations
User-provided data layout conversion codelets. . .
. . . automatically called upon transfers between devices
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Multiformat

Example
Declare conversion codelets

Array of structures for CPU
Structure of arrays for NVidia CUDA GPU
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1 /⇤ C o n v e r s i o n c o d e l e t s ⇤/

2 s t r u c t s t a r p u _ m u l t i f o r m a t _ d a t a _ i n t e r f a c e _ o p s format_ops = {
3 . cuda_e l ems i ze = 2 ⇤ s i z e o f ( f l o a t ) ,
4 . cpu_to_cuda_cl = &cpu_to_cuda_cl ,
5

6 . cuda_to_cpu_cl = &cuda_to_cpu_cl ,
7 . cpu_e l ems i ze = 2 ⇤ s i z e o f ( f l o a t ) ,
8 . . .
9 } ;

10

11 /⇤ M u l t i f o r m a t hand l e r e g i s t r a t i o n ⇤/

12 s t a r p u _ m u l t i f o r m a t _ d a t a _ r e g i s t e r ( handle , 0 ,
13 &a r r a y _ o f _ s t r u c t s , NX, &format_ops ) ;



Multiformat

Example
Declare conversion codelets
Array of structures for CPU

Structure of arrays for NVidia CUDA GPU
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1 /⇤ CPU Computat ion Ke rne l ⇤/

2

3 vo id
4 mu l t i f o rmat_sca l_cpu_func ( vo id ⇤ b u f f e r s [ ] , vo id ⇤ c l _ a r g ) {
5 s t r u c t p o i n t ⇤ aos ;
6 uns igned i n t n ;
7

8 aos = STARPU_MULTIFORMAT_GET_CPU_PTR( b u f f e r s [ 0 ] ) ;
9 n = STARPU_MULTIFORMAT_GET_NX( b u f f e r s [ 0 ] ) ;

10 . . .
11 }



Multiformat

Example
Declare conversion codelets
Array of structures for CPU
Structure of arrays for NVidia CUDA GPU
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1 /⇤ GPU Computation Ke rne l ⇤/

2

3 ex te rn "C" vo id
4 mu l t i f o rmat_sca l_cuda_func ( vo id ⇤ b u f f e r s [ ] , vo id ⇤ c l _ a r g ) {
5 uns igned i n t n ;
6 s t r u c t s t r u c t _ o f _ a r r a y s ⇤ soa ;
7

8 soa = ( s t r u c t s t r u c t _ o f _ a r r a y s ⇤)
9 STARPU_MULTIFORMAT_GET_CUDA_PTR( b u f f e r s [ 0 ] ) ;

10 n = STARPU_MULTIFORMAT_GET_NX( b u f f e r s [ 0 ] ) ;
11

12 . . .
13 }



Large workloads

Using disks as StarPU memory nodes
Out-of-Core

Enable StarPU to evict temporarily unused data to disk
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Input/Output Support
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StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance
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12
Advanced Analysis and Monitoring Topics



Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)
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1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3

4 s t a r p u _ t a s k _ i n s e r t ( . . . ) ;
5 s t a r p u _ t a s k _ i n s e r t ( . . . ) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l ( ) ;
8

9

10 . . .
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Simulation with SimGrid

Scheduling without executing kernels
Requires the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .
. . . collected by StarPU on a real machine

Enables fast experiments when designing application algorithms
Enables fast experiments when designing scheduling algorithms
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Simulation accuracy with SimGrid
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Simulation with StarPU/SimGrid (L. Stanisic)
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Simulation with StarPU/SimGrid (L. Stanisic)
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13
Conclusion



Conclusion

StarPU

A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Async. Task Submission + Inferred Dependencies
Execution Model: Scheduler + Distributed Shared Memory

The key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance
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Thanks for your attention.

StarPU runtime system
Web Site: http://starpu.gforge.inria.fr/
LGPL License

Open to external contributors

http://starpu.gforge.inria.fr/

