
StarPU, a Task-Based Runtime System

for Heterogeneous Platform Programming

Olivier Aumage, Team STORM
Inria – LaBRI

olivier.aumage@inria.fr

ST RM
Static Optimizations – Runtime Methods

olivier.aumage@inria.fr

Team STORM

STatic Optimizations, Runtime Methods

Inria Bordeaux – Sud-Ouest, LaBRI Laboratory
Head: Denis Barthou

Research directions
– Expressing...
– Adapting... ... parallelism
– Optimizing...

O. Aumage – StarPU Runtime 2

Compiler

Runtime System

Parallel Languages

Parallel Architectures
(SIMD, multicore CPU, GPU, manycore accelerators)

(OpenMP, OpenCL)

(Qiral, SYCL, P-EDGE, SOTL)

(KSTAR)

(StarPU)

Domain Specific Languages

Pe
rfo

rm
an

ce
 A

bs
tra

ct
io

n
(S

ta
rP

U
 /

Si
m

G
rid

)

Contents

1. Runtime Systems for Heterogeneous Platforms

2. The StarPU Task-Based Runtime System

3. Programming with StarPU

4. StarPU Internals
5. Scheduling Policies

6. Data Management

7. Analysis and Monitoring

8. Distributed Computing

9. Interoperability and Composition

10. Advanced Scheduling Topics

11. Advanced Data Management Topics

12. Advanced Analysis and Monitoring Topics

13. Conclusion

O. Aumage – StarPU Runtime 3

O. Aumage – StarPU Runtime 4

1
Runtime Systems for Heterogeneous Plat-
forms

Hardware Evolution

More capabilities, more complexity

Display
Higher resolutions
2D acceleration
3D rendering

Networking
Processing o�oad
Zero-copy transfers
Hardware multiplexing

I/O
RAID
SSD vs Disks
Network-attached disks
Parallel file systems

O. Aumage – StarPU Runtime – 1. Runtime Systems 5

Hardware Evolution

More capabilities, more complexity

Display
Higher resolutions
2D acceleration
3D rendering

Networking
Processing o�oad
Zero-copy transfers
Hardware multiplexing

I/O
RAID
SSD vs Disks
Network-attached disks
Parallel file systems

O. Aumage – StarPU Runtime – 1. Runtime Systems 5

Hardware Evolution

More capabilities, more complexity

Display
Higher resolutions
2D acceleration
3D rendering

Networking
Processing o�oad
Zero-copy transfers
Hardware multiplexing

I/O
RAID
SSD vs Disks
Network-attached disks
Parallel file systems

O. Aumage – StarPU Runtime – 1. Runtime Systems 5

Hardware Evolution

More capabilities, more complexity

Display
Higher resolutions
2D acceleration
3D rendering

Networking
Processing o�oad
Zero-copy transfers
Hardware multiplexing

I/O
RAID
SSD vs Disks
Network-attached disks
Parallel file systems

O. Aumage – StarPU Runtime – 1. Runtime Systems 5

Hardware Evolution

More capabilities, more complexity

Display
Higher resolutions
2D acceleration
3D rendering

Networking
Processing o�oad
Zero-copy transfers
Hardware multiplexing

I/O
RAID
SSD vs Disks
Network-attached disks
Parallel file systems

O. Aumage – StarPU Runtime – 1. Runtime Systems 5

Computing Hardware?

Technology Dilemma for the Application Programmer

Stay conservative?

Only use long established features
– Display: Basic graphics or terminal output
– Networking: Unix systems calls, TCP sockets
– I/O: Unix systems calls, read/write

Under-used hardware?
Low performance?

O. Aumage – StarPU Runtime – 1. Runtime Systems 6

Technology Dilemma for the Application Programmer

Stay conservative?

Only use long established features
– Display: Basic graphics or terminal output
– Networking: Unix systems calls, TCP sockets
– I/O: Unix systems calls, read/write

Under-used hardware?
Low performance?

O. Aumage – StarPU Runtime – 1. Runtime Systems 6

Technology Dilemma for the Application Programmer

Stay conservative?

Only use long established features
– Display: Basic graphics or terminal output
– Networking: Unix systems calls, TCP sockets
– I/O: Unix systems calls, read/write

Under-used hardware?
Low performance?

O. Aumage – StarPU Runtime – 1. Runtime Systems 6

Technology Dilemma for the Application Programmer

Stay conservative?

Only use long established features
– Display: Basic graphics or terminal output
– Networking: Unix systems calls, TCP sockets
– I/O: Unix systems calls, read/write

Under-used hardware?
Low performance?

O. Aumage – StarPU Runtime – 1. Runtime Systems 6

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?

E�ciency
Convenience
Portability?

– What if the application is used on di�erent hardware?
Adaptiveness?

– What if hardware resource availability/capacity is higher? Lower?
Cost?

– Is it worthwhile to use such “specific” features?
Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?

O. Aumage – StarPU Runtime – 1. Runtime Systems 7

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
E�ciency
Convenience

Portability?
– What if the application is used on di�erent hardware?

Adaptiveness?
– What if hardware resource availability/capacity is higher? Lower?

Cost?
– Is it worthwhile to use such “specific” features?

Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?

O. Aumage – StarPU Runtime – 1. Runtime Systems 7

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
E�ciency
Convenience
Portability?

– What if the application is used on di�erent hardware?

Adaptiveness?
– What if hardware resource availability/capacity is higher? Lower?

Cost?
– Is it worthwhile to use such “specific” features?

Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?

O. Aumage – StarPU Runtime – 1. Runtime Systems 7

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
E�ciency
Convenience
Portability?

– What if the application is used on di�erent hardware?
Adaptiveness?

– What if hardware resource availability/capacity is higher? Lower?

Cost?
– Is it worthwhile to use such “specific” features?

Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?

O. Aumage – StarPU Runtime – 1. Runtime Systems 7

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
E�ciency
Convenience
Portability?

– What if the application is used on di�erent hardware?
Adaptiveness?

– What if hardware resource availability/capacity is higher? Lower?
Cost?

– Is it worthwhile to use such “specific” features?

Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?

O. Aumage – StarPU Runtime – 1. Runtime Systems 7

Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
E�ciency
Convenience
Portability?

– What if the application is used on di�erent hardware?
Adaptiveness?

– What if hardware resource availability/capacity is higher? Lower?
Cost?

– Is it worthwhile to use such “specific” features?
Long-term viability?
Vendor-tied code?

– Is it worthwhile to invest into porting on such platforms?

O. Aumage – StarPU Runtime – 1. Runtime Systems 7

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

O. Aumage – StarPU Runtime – 1. Runtime Systems 8

O. Aumage – StarPU Runtime 9

1.1
Principles of Runtime Systems

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

The Role(s) of Runtime Systems

Portability

Control

Adaptiveness

Optimization

O. Aumage – StarPU Runtime – 1. Runtime Systems 10

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

The Role(s) of Runtime Systems

Portability

Control

Adaptiveness

Optimization

O. Aumage – StarPU Runtime – 1. Runtime Systems 10

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

The Role(s) of Runtime Systems

Portability

Control

Adaptiveness

Optimization

O. Aumage – StarPU Runtime – 1. Runtime Systems 10

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

The Role(s) of Runtime Systems

Portability

Control

Adaptiveness

Optimization

O. Aumage – StarPU Runtime – 1. Runtime Systems 10

Technology Dilemma for the Application Programmer

Answer: Use runtime systems!

The Role(s) of Runtime Systems

Portability

Control

Adaptiveness

Optimization

O. Aumage – StarPU Runtime – 1. Runtime Systems 10

Examples of Runtime Systems

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – StarPU Runtime – 1. Runtime Systems 11

Examples of Runtime Systems

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – StarPU Runtime – 1. Runtime Systems 11

Examples of Runtime Systems

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – StarPU Runtime – 1. Runtime Systems 11

Examples of Runtime Systems

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – StarPU Runtime – 1. Runtime Systems 11

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – StarPU Runtime – 1. Runtime Systems 12

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – StarPU Runtime – 1. Runtime Systems 12

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – StarPU Runtime – 1. Runtime Systems 12

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – StarPU Runtime – 1. Runtime Systems 12

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 13

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 13

Application

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 13

Application

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 13

Application

Hardware Devices

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with e�ective hardware aptitude and performance level

O. Aumage – StarPU Runtime – 1. Runtime Systems 14

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with e�ective hardware aptitude and performance level

O. Aumage – StarPU Runtime – 1. Runtime Systems 14

Application

Hardware Devices

Fast

Slow

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with e�ective hardware aptitude and performance level

O. Aumage – StarPU Runtime – 1. Runtime Systems 14

Application

Hardware Devices

Fast

Slow

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with e�ective hardware aptitude and performance level

O. Aumage – StarPU Runtime – 1. Runtime Systems 14

Application

Hardware Devices

Fast

Slow

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation o�oad
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – StarPU Runtime – 1. Runtime Systems 15

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation o�oad
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – StarPU Runtime – 1. Runtime Systems 15

Application

Hardware Devices

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation o�oad
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – StarPU Runtime – 1. Runtime Systems 15

Application

Hardware Devices

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation o�oad
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – StarPU Runtime – 1. Runtime Systems 15

Application

Hardware Devices

O. Aumage – StarPU Runtime 16

1.2
Runtime Systems for Computing

Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster
Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together
Not a new idea. . .
. . . but definitely the key performance factor now

O. Aumage – StarPU Runtime – 1. Runtime Systems 17

Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster
Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together

Not a new idea. . .
. . . but definitely the key performance factor now

O. Aumage – StarPU Runtime – 1. Runtime Systems 17

Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster
Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together
Not a new idea. . .
. . . but definitely the key performance factor now

O. Aumage – StarPU Runtime – 1. Runtime Systems 17

Heterogeneous Computing Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization

Distributed cores, discrete accelerators
– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Overall increased parallelism diversity
– Multiprocessors, multicores
– Vector processing extensions
– Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 18

Heterogeneous Computing Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Overall increased parallelism diversity
– Multiprocessors, multicores
– Vector processing extensions
– Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 18

Heterogeneous Computing Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Overall increased parallelism diversity
– Multiprocessors, multicores
– Vector processing extensions
– Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 18

Heterogeneous Computing Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Overall increased parallelism diversity
– Multiprocessors, multicores
– Vector processing extensions
– Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 18

Heterogeneous Computing Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Overall increased parallelism diversity
– Multiprocessors, multicores
– Vector processing extensions
– Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 18

Example: CPU vs GPU Hardware

Multiple strategies for multiple purposes

CPU
– Strategy

– Large caches
– Large control

– Purpose
– Complex codes, branching
– Complex memory access patterns

– World Rally Championship car
GPU

– Strategy
– Lot of computing power
– Simplified control

– Purpose
– Regular data parallel codes
– Simple memory access patterns

– Formula One car

O. Aumage – StarPU Runtime – 1. Runtime Systems 19

CPU

GPU

Control
ALU ALU

ALU ALU

Cache

DRAM

DRAM

Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 20

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 20

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 20

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

GPU

DRAM

Control

Control
Scalar Cores

(Streaming Processors)

Streaming Multiprocessor

R1 + R2

R5 / R2

Scalar Cores

Accelerators

O. Aumage – StarPU Runtime – 1. Runtime Systems 20

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-o�

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

SIMT is distinct from SIMD
Allows flows to diverge
. . . but better avoid it!

GPU

Control
Scalar Cores

(Streaming Processors)

Streaming Multiprocessor

R1 + R2

...
if(cond){

 ...
 ...
 ...

} else {
 ...
 ...
}
...

Problematics

Unified computing runtime system for heterogeneous platforms
Portability of performance

– Abstraction
– Adaptiveness
– Execution Control
– Optimization

Need a way to abstract application execution. . .

. . . into elementary, manageable objects

O. Aumage – StarPU Runtime – 1. Runtime Systems 21

O. Aumage – StarPU Runtime 22

1.3
Abstracting Application Workload

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – StarPU Runtime – 1. Runtime Systems 23

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – StarPU Runtime – 1. Runtime Systems 23

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – StarPU Runtime – 1. Runtime Systems 23

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – StarPU Runtime – 1. Runtime Systems 23

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – StarPU Runtime – 1. Runtime Systems 23

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application

Computation
Threads

CPU

Parallel Platform

CPU

CPU

Threads: Resources vs Needs

Lack of abstraction
Threads express explicit resource request
instead of application requirements

O. Aumage – StarPU Runtime – 1. Runtime Systems 24

Threads: Resources vs Needs

Lack of abstraction
Threads express explicit resource request
instead of application requirements

O. Aumage – StarPU Runtime – 1. Runtime Systems 24

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – StarPU Runtime – 1. Runtime Systems 25

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – StarPU Runtime – 1. Runtime Systems 25

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – StarPU Runtime – 1. Runtime Systems 25

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – StarPU Runtime – 1. Runtime Systems 25

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – StarPU Runtime – 1. Runtime Systems 25

Application

CPU

CPU

Parallel Platform

Computation
Threads

Time

Threads: Lack of Semantics

What does a thread really do?
Resource usage?
Inter-thread constraints
Chaining constraints, ordering?

Planning Issues
Unbounded computation
System-controlled context switches

Consequences
Heavy synchronizations: barriers
User-managed fine-grain synchronizations: locks, mutexes
Little to no help from runtime system

O. Aumage – StarPU Runtime – 1. Runtime Systems 26

Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU

O. Aumage – StarPU Runtime – 1. Runtime Systems 27

Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU

O. Aumage – StarPU Runtime – 1. Runtime Systems 27

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Time

Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU

O. Aumage – StarPU Runtime – 1. Runtime Systems 27

Application

Computation
Threads

CPU

Parallel Platform

CPU

CPU

Time

Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?

O. Aumage – StarPU Runtime – 1. Runtime Systems 28

Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?

O. Aumage – StarPU Runtime – 1. Runtime Systems 28

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Time

Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?

O. Aumage – StarPU Runtime – 1. Runtime Systems 28

Application

Computation
Threads

CPU

Parallel Platform

CPU

CPU

Time

Network / IO Request

MPI_SEND

Join Fork

Threads: Outcome

Perhaps not the right semantics for end-user application development

Over-constrained concept for application programming

Awkward object to manipulate at the runtime system level

Not well suited to leverage theoretical scheduling results
– Completion?
– Other metrics?

O. Aumage – StarPU Runtime – 1. Runtime Systems 29

Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies
– No side e�ect (no hidden dependencies)

æ Degrees of Freedom in realizing the potential parallelism

Shared (often fixed) pool of worker threads
æ Decoupled engine, to realize a potentially parallel execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 30

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies
– No side e�ect (no hidden dependencies)

æ Degrees of Freedom in realizing the potential parallelism

Shared (often fixed) pool of worker threads
æ Decoupled engine, to realize a potentially parallel execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 30

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies
– No side e�ect (no hidden dependencies)

æ Degrees of Freedom in realizing the potential parallelism

Shared (often fixed) pool of worker threads
æ Decoupled engine, to realize a potentially parallel execution

O. Aumage – StarPU Runtime – 1. Runtime Systems 30

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)
The runtime remains free to decide the amount of resources to execute a task

Rationalize resource consumption
– Thread and associated stack reused among several tasks

Enforce separation of concerns
– Management code brought out of the application

Open the way to resource allocation optimization
– Cross-cutting view of the application requirements

O. Aumage – StarPU Runtime – 1. Runtime Systems 31

Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)
The runtime remains free to decide the amount of resources to execute a task

Rationalize resource consumption
– Thread and associated stack reused among several tasks

Enforce separation of concerns
– Management code brought out of the application

Open the way to resource allocation optimization
– Cross-cutting view of the application requirements

O. Aumage – StarPU Runtime – 1. Runtime Systems 31

Application

CPU

CPU

Parallel Platform

Tasks: Resources Miss-subscription?

The runtime system may initialize a pool of worker threads according to the
hardware capabilities

The application submit tasks independently to the runtime, independently of the
hardware capabilities

Tasks submitted by the application according to its natural algorithm
– Abstraction with respect to hardware

Workers allocated according to hardware resource, topology
– Typically one thread per core or per hardware thread

Operating system scheduler interference largely eliminated
– No competition between worker threads

O. Aumage – StarPU Runtime – 1. Runtime Systems 32

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – StarPU Runtime – 1. Runtime Systems 33

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – StarPU Runtime – 1. Runtime Systems 33

Application

CPU

CPU

Parallel Platform

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – StarPU Runtime – 1. Runtime Systems 33

Application

CPU

CPU

Parallel Platform

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – StarPU Runtime – 1. Runtime Systems 33

Application

CPU

CPU

Parallel Platform

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – StarPU Runtime – 1. Runtime Systems 33

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield

O. Aumage – StarPU Runtime – 1. Runtime Systems 34

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield

O. Aumage – StarPU Runtime – 1. Runtime Systems 34

Application

CPU

CPU

Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield

O. Aumage – StarPU Runtime – 1. Runtime Systems 34

Application

CPU

CPU

Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield

O. Aumage – StarPU Runtime – 1. Runtime Systems 34

Application

CPU

CPU

Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield

O. Aumage – StarPU Runtime – 1. Runtime Systems 34

Application

CPU CPU

GPU

Heterogeneous Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as su�cient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated o�oads

Transparency
– No need for explicit yield

O. Aumage – StarPU Runtime – 1. Runtime Systems 34

Application

CPU CPU

GPU

Heterogeneous Parallel Platform

Tasks: Networking and I/O Issues?

Potential 1-to-1 relationship between tasks and network/IO requests

Network/IO request may start as soon as the task producing the data has
been completed

Tasks may be triggered as the result of network/IO requests completion

Significant di�erence with fork-join models, MPI+X
– Transparent interoperability
– Avoid deferred network/IO requests until next join
– Avoid custom network/IO requests management inside the application code

O. Aumage – StarPU Runtime – 1. Runtime Systems 35

Tasks: Outcome

Task = Characterizable work

Well-defined
– Workload
– Completion
– Dependencies
– Similar to the pure function concept from Functional programming domain

Suitable object for modelling
– Constraints
– Degrees of freedom
– Large corpus of task scheduling theory

Enforcing separation of concerns
– Application specialist
– Kernel(s) specialist
– Scheduling theoretician specialist
– Runtime-system specialist

O. Aumage – StarPU Runtime – 1. Runtime Systems 36

Programming Modern Platforms using Tasks

See second part: Programming Modern Platforms with the StarPU Task-Based
Runtime System

Rich set of existing task-based programming models and associated runtime
systems

DuctTeip
Legion
OCR
OpenMP 4.x
OmpSs
ParalleX
PaRSEC
Swan
Uintah/Kokkos
XKaapi
...

O. Aumage – StarPU Runtime – 1. Runtime Systems 37

O. Aumage – StarPU Runtime 38

2
The StarPU Task-Based Runtime System

Heterogeneous Parallel Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 39

Task Scheduling
Task

Elementary computation
– Some kernel

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies

æ Degrees of Freedom in realizing the potential parallelism

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 40

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

Task Scheduling
Task

Elementary computation
– Some kernel

æ Potential parallel work

Constraints
– Input needed
– Output produced
– æ Dependencies

æ Degrees of Freedom in realizing the potential parallelism

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 40

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

StarPU Programming Model: Sequential Task Flow

Express parallelism...
... using the natural program flow

Submit tasks in the sequential flow of the program...
... then let the runtime schedule the tasks asynchronously

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 41

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 42

for (j = 0; j < N; j++) {

POTRF (

RW,

A[j][j]);

for (i = j+1; i < N; i++)

TRSM (

RW,

A[i][j],

R,

A[j][j]);

for (i = j+1; i < N; i++) {

SYRK (

RW,

A[i][i],

R,

A[i][j]);

for (k = j+1; k < i; k++)

GEMM (

RW,

A[i][k],

R,

A[i][j],

R,

A[k][j]);

}

}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 42

for (j = 0; j < N; j++) {

POTRF (RW,A[j][j]);

for (i = j+1; i < N; i++)

TRSM (RW,A[i][j], R,A[j][j]);

for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][j]);

for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]);

}

}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously

StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...

... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 43

for (j = 0; j < N; j++) {

task_insert(POTRF (RW,A[j][j]));

for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));

for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));

for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],

R,A[i][j], R,A[k][j]));

}

}

wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
Allocating computing resources
Enforcing dependency constraints
Handling data transfers

Adaptiveness
A single DAG enables multiple schedulings
A single DAG can be mapped on multiple platforms

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 44

M. GPU M. GPU

CPU

CPU

CPU

CPU
CPU

CPU

CPU

CPU

Time

Example: SCHNAPS, Implicit kinetic schemes

SCHNAPS Solver (Inria TONUS)
Example of a task graph submitted to StarPU

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 45

interface_extract_iv_model
sync_task

interface_extract_iv_model sync_task

interface_extract_iv_model
sync_task

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model sync_task

interface_extract_iv_model

sync_task

interface_extract_iv_model sync_task

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

sync_task

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model
sync_task

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_residual_assembly_iv_interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_extract_iv_model
sync_task

interface_extract_iv_modelinterface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model
interface_residual_assembly_iv_

interface_extract_iv_model

field_residual_assembly_iv_perf interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

klu_solve_iv_perf_model
field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf interface_boundary_residual_ass klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf
klu_solve_iv_perf_model field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass
klu_solve_iv_perf_model interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_modelsync_task

field_residual_assembly_iv_perf interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_modelsync_task

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

field_residual_assembly_iv_perf klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo
field_micro_relaxation_iv_modelsync_task sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass

klu_solve_iv_perf_model interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

klu_solve_iv_perf_model field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_modelsync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

klu_solve_iv_perf_model field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_modelsync_task

field_set_to_zero_global field_micro_to_macro_iv_perf_mo

sync_task

field_micro_relaxation_iv_model

field_set_to_zero_global
field_micro_to_macro_iv_perf_mo

sync_task

field_micro_relaxation_iv_model

field_set_to_zero_global

field_micro_to_macro_iv_perf_mo
sync_task

field_micro_relaxation_iv_model

field_set_to_zero_global
field_micro_to_macro_iv_perf_mo sync_task field_micro_relaxation_iv_model

Heterogeneous Showcase with Chameleon + StarPU

UTK, Inria HIEPACS, Inria RUNTIME
QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 46

“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on

a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011.”

Heterogeneous Showcase with Chameleon + StarPU

UTK, Inria HIEPACS, Inria RUNTIME
QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 46

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
flo

p/
s

Matrix order

4 GPUs + 16 CPUs
4 GPUs + 4 CPUs
3 GPUs + 3 CPUs
2 GPUs + 2 CPUs
1 GPUs + 1 CPUs

Expected increase:
+12 CPUs
~150 Gflops

Measured increase:
+12 CPUs
~200 GFlops

“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on

a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011.”

Heterogeneous Showcase with Chameleon + StarPU

QR kernel properties
Kernel SGEQRT
CPU: 9 GFlop/s GPU: 30 GFlop/s Speed-up: 3
Kernel STSQRT
CPU: 12 GFlop/s GPU: 37 GFlop/s Speed-up: 3
Kernel SOMQRT
CPU: 8.5 GFlop/s GPU: 227 GFlop/s Speed-up: 27
Kernel SSSMQ
CPU: 10 GFlop/s GPU: 285 GFlop/s Speed-up: 28

Consequences
Task distribution

– SGEQRT: 20% Tasks on GPU
– SSSMQ: 92% tasks on GPU

Taking advantage of heterogeneity!
– Only do what you are good for
– Don’t do what you are not good for

O. Aumage – StarPU Runtime – 2. The StarPU Runtime 47

O. Aumage – StarPU Runtime 48

3
Programming with StarPU

Terminology

Codelet
Task
Data handle

O. Aumage – StarPU Runtime – 3. Programming with StarPU 49

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 50

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 50

scal_cl

Codelet

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 50

scal_cl

Codelet

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 50

scal_cl

Codelet

Task 1: will perform a ’scal’ kernel

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 50

scal_cl

Codelet

Task 1: will perform a ’scal’ kernel

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 50

scal_cl

Codelet

Task 1: will perform a ’scal’ kernel

Task 2: will perform a ’scal’ kernel

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

R W

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

R W

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet

scal_cl

R W

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W Task 1 waits for input data

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W

R

Task 1 receives its input data

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W Task 1 is running

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – StarPU Runtime – 3. Programming with StarPU 51

Codelet
scal_cl

R W

W

Task 1 outputs data result

Definition: A Data Handle

A Data Handle. . .
. . . designates a piece of data managed by StarPU
. . . is typed (vector, matrix, etc.)
. . . can be passed as input/output for a Task

O. Aumage – StarPU Runtime – 3. Programming with StarPU 52

Elementary API

Declaring a codelet
Declaring and Managing Data
Writing a Kernel Function
Submitting a task
Waiting for submitted tasks

O. Aumage – StarPU Runtime – 3. Programming with StarPU 53

Declaring a Codelet

Define a struct starpu_codelet

Plug the kernel function
– Here: scal_cpu_func

Declare the number of data pieces used by the kernel
– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W

O. Aumage – StarPU Runtime – 3. Programming with StarPU 54

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . . .
3 } ;

Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func

Declare the number of data pieces used by the kernel
– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W

O. Aumage – StarPU Runtime – 3. Programming with StarPU 54

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . . .
4 } ;

Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func
Declare the number of data pieces used by the kernel

– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W

O. Aumage – StarPU Runtime – 3. Programming with StarPU 54

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . n b u f f e r s = 1 ,
4 . . .
5 } ;

Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func
Declare the number of data pieces used by the kernel

– Here: A single vector
Declare how the kernel accesses the piece of data

– Here: The vector is scaled in-place, thus R/W

O. Aumage – StarPU Runtime – 3. Programming with StarPU 54

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . n b u f f e r s = 1 ,
4 . modes = { STARPU_RW } ,
5 } ;

Declaring and Managing Data

Put data under StarPU control

Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control
Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – StarPU Runtime – 3. Programming with StarPU 55

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data

Register the piece of data and get a handle
– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – StarPU Runtime – 3. Programming with StarPU 55

1 f l o a t v e c t o r [NX] ;
2 /⇤ . . . f i l l data . . . ⇤/

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – StarPU Runtime – 3. Programming with StarPU 55

1 f l o a t v e c t o r [NX] ;
2 /⇤ . . . f i l l data . . . ⇤/

3

4 starpu_data_handle_t v e c t o r _ h a n d l e ;
5 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
6 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0])) ;

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control
Use data through the handle

Unregister the piece of data
– The handle is destroyed
– The vector is now back under user control

O. Aumage – StarPU Runtime – 3. Programming with StarPU 55

1 f l o a t v e c t o r [NX] ;
2 /⇤ . . . f i l l data . . . ⇤/

3

4 starpu_data_handle_t v e c t o r _ h a n d l e ;
5 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
6 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0])) ;
7

8 /⇤ . . . use the v e c t o r through the hand l e . . . ⇤/

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control
Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – StarPU Runtime – 3. Programming with StarPU 55

1 f l o a t v e c t o r [NX] ;
2 /⇤ . . . f i l l data . . . ⇤/

3

4 starpu_data_handle_t v e c t o r _ h a n d l e ;
5 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
6 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0])) ;
7

8 /⇤ . . . use the v e c t o r through the hand l e . . . ⇤/

9

10 s ta rpu_data_unreg i s t e r (v e c t o r _ h a n d l e) ;

Writing a Kernel Function

Every kernel function has the same C prototype

Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – StarPU Runtime – 3. Programming with StarPU 56

1 vo id sca l_cpu_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
2 . . .
3 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle

Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – StarPU Runtime – 3. Programming with StarPU 56

1 vo id sca l_cpu_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
2 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s

[0] ;
3

4 . . .
5 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle
Get vector’s number of elements and base pointer

Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – StarPU Runtime – 3. Programming with StarPU 56

1 vo id sca l_cpu_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
2 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s

[0] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
5 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
6

7 . . .
8 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument

Compute the vector scaling

O. Aumage – StarPU Runtime – 3. Programming with StarPU 56

1 vo id sca l_cpu_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
2 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s

[0] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
5 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
6

7 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
8

9 . . .
10 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – StarPU Runtime – 3. Programming with StarPU 56

1 vo id sca l_cpu_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
2 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s

[0] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
5 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
6

7 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
8

9 uns igned i ;
10 f o r (i = 0 ; i < n ; i ++)
11 v e c t o r [i] ⇤= ⇤ p t r _ f a c t o r ;
12 }

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure

The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

1 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l
2 . . .) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data

The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

1 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
2 STARPU_RW , v ec to r_hand l e ,
3 . . .) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data

0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

1 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
2 STARPU_RW , v ec to r_hand l e ,
3 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
4 . . .) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

1 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
2 STARPU_RW , v ec to r_hand l e ,
3 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
4 0) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly

Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .

. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program

This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – StarPU Runtime – 3. Programming with StarPU 57

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly

Wait for all submitted tasks to complete their work

O. Aumage – StarPU Runtime – 3. Programming with StarPU 58

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly

Wait for all submitted tasks to complete their work

O. Aumage – StarPU Runtime – 3. Programming with StarPU 58

1 /⇤ non≠b l o c k i n g t a s k submi t s ⇤/

2 s t a r p u _ t a s k _ i n s e r t (. . .) ;
3 . . .

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly
Wait for all submitted tasks to complete their work

O. Aumage – StarPU Runtime – 3. Programming with StarPU 58

1 /⇤ non≠b l o c k i n g t a s k submi t s ⇤/

2 s t a r p u _ t a s k _ i n s e r t (. . .) ;
3 . . .

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly
Wait for all submitted tasks to complete their work

O. Aumage – StarPU Runtime – 3. Programming with StarPU 58

1 /⇤ non≠b l o c k i n g t a s k submi t s ⇤/

2 s t a r p u _ t a s k _ i n s e r t (. . .) ;
3 . . .
4

5 /⇤ wa i t f o r a l l t a s k submi t t ed so f a r ⇤/

6 s t a r p u _ t a s k _ w a i t _ f o r _ a l l () ;

Basic Example: Scaling a Vector (main prog.)

O. Aumage – StarPU Runtime – 3. Programming with StarPU 59

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;

Basic Example: Scaling a Vector (main prog.)

O. Aumage – StarPU Runtime – 3. Programming with StarPU 60

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t v e c t o r _ h a n d l e ;

Basic Example: Scaling a Vector (main prog.)

O. Aumage – StarPU Runtime – 3. Programming with StarPU 61

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t v e c t o r _ h a n d l e ;
4

5 /⇤ . . . f i l l v e c t o r . . . ⇤/

6

7 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
8 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;

Basic Example: Scaling a Vector (main prog.)

O. Aumage – StarPU Runtime – 3. Programming with StarPU 62

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t v e c t o r _ h a n d l e ;
4

5 /⇤ . . . f i l l v e c t o r . . . ⇤/

6

7 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
8 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a r p u _ t a s k _ i n s e r t (
11 &s c a l _ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;

Basic Example: Scaling a Vector (main prog.)

O. Aumage – StarPU Runtime – 3. Programming with StarPU 63

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t v e c t o r _ h a n d l e ;
4

5 /⇤ . . . f i l l v e c t o r . . . ⇤/

6

7 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
8 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a r p u _ t a s k _ i n s e r t (
11 &s c a l _ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;
15

16 s ta rpu_task_wa i t_ fo r_a l l () ;

Basic Example: Scaling a Vector (main prog.)

O. Aumage – StarPU Runtime – 3. Programming with StarPU 64

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t v e c t o r _ h a n d l e ;
4

5 /⇤ . . . f i l l v e c t o r . . . ⇤/

6

7 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (& vec to r_hand l e , 0 ,
8 (u i n t p t r _ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a r p u _ t a s k _ i n s e r t (
11 &s c a l _ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;
15

16 s ta rpu_task_wa i t_ fo r_a l l () ;
17 s ta rpu_data_unreg i s t e r (v e c t o r _ h a n d l e) ;
18

19 /⇤ . . . d i s p l a y v e c t o r . . . ⇤/

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms

Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels

Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels

O. Aumage – StarPU Runtime – 3. Programming with StarPU 65

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels

Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels

O. Aumage – StarPU Runtime – 3. Programming with StarPU 65

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 s ca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . n b u f f e r s = 1 ,
5 . modes = { STARPU_RW } ,
6 } ;

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels
Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels

O. Aumage – StarPU Runtime – 3. Programming with StarPU 65

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 sca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . openc l_ func = { sca l_cpu_openc l , NULL } ,
5 . cuda_func = { scal_cpu_cuda , NULL } ,
6 . n b u f f e r s = 1 ,
7 . modes = { STARPU_RW } ,
8 } ;

Writing a Kernel Function for CUDA

O. Aumage – StarPU Runtime – 3. Programming with StarPU 66

Writing a Kernel Function for CUDA

O. Aumage – StarPU Runtime – 3. Programming with StarPU 66

1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g)
{

9 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
11 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
12 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
13

14 . . .
15

16

17

18

19 }

Writing a Kernel Function for CUDA

O. Aumage – StarPU Runtime – 3. Programming with StarPU 66

1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g)
{

9 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
11 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
12 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned n b l o c k s = (n+threads_per_b lock ≠1)/

th r eads_pe r_b lock ;
16

17 . . .
18

19 }

Writing a Kernel Function for CUDA

O. Aumage – StarPU Runtime – 3. Programming with StarPU 66

1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g)
{

9 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
11 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
12 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned n b l o c k s = (n+threads_per_b lock ≠1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t r eam ()>>>(n , vec to r ,⇤

p t r _ f a c t o r) ;
19 }

Writing a Kernel Function for CUDA

O. Aumage – StarPU Runtime – 3. Programming with StarPU 66

1 s t a t i c __global__ vo id vector_mult_cuda (uns igned n ,
2 f l o a t ⇤ vec to r , f l o a t f a c t o r

) {
3 uns igned i = b l o c k I d x . x⇤blockDim . x + t h r e a d I d x . x ;
4

5 . . .
6 }
7

8 ex te rn "C" vo id sca l_cuda_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g)
{

9 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
11 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
12 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned n b l o c k s = (n+threads_per_b lock ≠1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t r eam ()>>>(n , vec to r ,⇤

p t r _ f a c t o r) ;
19 }

Writing a Kernel Function for CUDA

O. Aumage – StarPU Runtime – 3. Programming with StarPU 66

1 s t a t i c __global__ vo id vector_mult_cuda (uns igned n ,
2 f l o a t ⇤ vec to r , f l o a t f a c t o r

) {
3 uns igned i = b l o c k I d x . x⇤blockDim . x + t h r e a d I d x . x ;
4 i f (i < n)
5 v e c t o r [i] ⇤= f a c t o r ;
6 }
7

8 ex te rn "C" vo id sca l_cuda_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g)
{

9 s t r u c t s t a r p u _ v e c t o r _ i n t e r f a c e ⇤ v e c t o r _ h a n d l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c t o r _ h a n d l e) ;
11 f l o a t ⇤ v e c t o r = STARPU_VECTOR_GET_PTR (v e c t o r _ h a n d l e) ;
12 f l o a t ⇤ p t r _ f a c t o r = c l _ a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned n b l o c k s = (n+threads_per_b lock ≠1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t r eam ()>>>(n , vec to r ,⇤

p t r _ f a c t o r) ;
19 }

O. Aumage – StarPU Runtime 67

4
StarPU Internals

StarPU Internal Structure

O. Aumage – StarPU Runtime – 4. StarPU Internals 68

High-level data management
library

Execution model

Specific drivers

CPUs

Scheduling engine

HPC Applications

Mastering CPUs, GPUs, SPUs *PU StarPU

GPUs SPUs ...

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A

Submit task « A+=B »

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A

A = A+B

Submit task « A+=B »

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A
A = A+B

Schedule task

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A
A = A+B

Fetch data

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A
A = A+B

A

Fetch data

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A
A = A+B

A

Fetch data

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A

A = A+B

A

Offload computation

StarPU Internal Functioning

O. Aumage – StarPU Runtime – 4. StarPU Internals 69

Scheduling engine

Application

GPU driver

Memory

Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k
...

A B

B A

A

Notify termination

O. Aumage – StarPU Runtime 70

5
Scheduling Policies

StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

O. Aumage – StarPU Runtime – 5. Scheduling Policies 71

StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
Providing more input to the scheduler. . .
. . . can lead to better scheduling decisions

What kind of information?
Relative importance of tasks

– Priorities
Cost of tasks

– Codelet models
Cost of transferring data

– Bus calibration

O. Aumage – StarPU Runtime – 5. Scheduling Policies 72

StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
Providing more input to the scheduler. . .
. . . can lead to better scheduling decisions

What kind of information?
Relative importance of tasks

– Priorities
Cost of tasks

– Codelet models
Cost of transferring data

– Bus calibration

O. Aumage – StarPU Runtime – 5. Scheduling Policies 72

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – StarPU Runtime – 5. Scheduling Policies 73

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – StarPU Runtime – 5. Scheduling Policies 73

1 $ e x p o r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler

Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – StarPU Runtime – 5. Scheduling Policies 73

1 $ e x p o r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ e x p o r t STARPU_SCHED=dm
2 $ my_program
3 . . .

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager

No need to recompile the application

O. Aumage – StarPU Runtime – 5. Scheduling Policies 73

1 $ e x p o r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ e x p o r t STARPU_SCHED=dm
2 $ my_program
3 . . .

1 $ unse t STARPU_SCHED
2 $ my_program
3 . . .

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – StarPU Runtime – 5. Scheduling Policies 73

1 $ e x p o r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ e x p o r t STARPU_SCHED=dm
2 $ my_program
3 . . .

1 $ unse t STARPU_SCHED
2 $ my_program
3 . . .

Task Mapping using a Performance Model

O. Aumage – StarPU Runtime – 5. Scheduling Policies 74

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores
CPU

GPU 2

GPU 1

? Time

Task Mapping using a Performance Model

O. Aumage – StarPU Runtime – 5. Scheduling Policies 75

Using codelet performance models
– Kernel calibration on each available computing device
– Raw history model of kernels’ past execution times
– Refined models using regression on kernels’ execution times history

Model parameter(s)
– Data size
– User-defined parameters

O. Aumage – StarPU Runtime 76

6
Data Management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies

Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies
Handles scheduling (policy)

Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies
Handles scheduling (policy)

Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – StarPU Runtime – 6. Data Management 77

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI
protocol)

Distributed Shared Memory Consistency

MSI Protocol

M: Modified
S: Shared
I: Invalid

O. Aumage – StarPU Runtime – 6. Data Management 78

I S S M I I

Data B Data A

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU
B

A

A

Distributed Shared Memory Consistency

MSI Protocol

M: Modified
S: Shared
I: Invalid

O. Aumage – StarPU Runtime – 6. Data Management 78

I S S M I I

S I S

R (3)

Data B Data A

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU
B

A

A

B

Distributed Shared Memory Consistency

MSI Protocol

M: Modified
S: Shared
I: Invalid

O. Aumage – StarPU Runtime – 6. Data Management 78

I S S

I I M

RW (3)
M I I

S I S

Data B Data A

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU
B

A

A

B

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
CPU ¡ GPU transfers
Data transfer cost vs kernel o�oad benefit

Transfer cost modelling
Bus calibration

– Can di�er even for identical devices
– Platform’s topology

Data-transfer aware scheduling
Deque Model Data Aware (dmda) scheduling policy variants
Tunable data transfer cost bias

– locality
– vs load balancing

O. Aumage – StarPU Runtime – 6. Data Management 79

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
CPU ¡ GPU transfers
Data transfer cost vs kernel o�oad benefit

Transfer cost modelling
Bus calibration

– Can di�er even for identical devices
– Platform’s topology

Data-transfer aware scheduling
Deque Model Data Aware (dmda) scheduling policy variants
Tunable data transfer cost bias

– locality
– vs load balancing

O. Aumage – StarPU Runtime – 6. Data Management 79

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
CPU ¡ GPU transfers
Data transfer cost vs kernel o�oad benefit

Transfer cost modelling
Bus calibration

– Can di�er even for identical devices
– Platform’s topology

Data-transfer aware scheduling
Deque Model Data Aware (dmda) scheduling policy variants
Tunable data transfer cost bias

– locality
– vs load balancing

O. Aumage – StarPU Runtime – 6. Data Management 79

Data Prefetching

Task states
Submitted

– Task inserted by the application
Ready

– Task’s dependencies resolved
Scheduled

– Task queued on a computing unit
Executing

– Task running on a computing unit

Anticipate on the Scheduled æ Executing transition
Prefetch triggered ASAP after Scheduled state

Prefetch may also be triggered by the application

O. Aumage – StarPU Runtime – 6. Data Management 80

Data Prefetching

Task states
Submitted

– Task inserted by the application
Ready

– Task’s dependencies resolved
Scheduled

– Task queued on a computing unit
Executing

– Task running on a computing unit

Anticipate on the Scheduled æ Executing transition
Prefetch triggered ASAP after Scheduled state

Prefetch may also be triggered by the application

O. Aumage – StarPU Runtime – 6. Data Management 80

Data Prefetching

Task states
Submitted

– Task inserted by the application
Ready

– Task’s dependencies resolved
Scheduled

– Task queued on a computing unit
Executing

– Task running on a computing unit

Anticipate on the Scheduled æ Executing transition
Prefetch triggered ASAP after Scheduled state
Prefetch may also be triggered by the application

O. Aumage – StarPU Runtime – 6. Data Management 80

Data Interfaces

Multiple data types supported
Vector
Matrix
BCSR sparse matrix

Extensible data type set
– You can write your own, specifically tailored data type

Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, . . .)

O. Aumage – StarPU Runtime – 6. Data Management 81

1 i n t v e c t o r [NX] ;
2 starpu_data_handle_t hand l e ;
3

4 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (&handle , 0 , (u i n t p t r _ t) ve c to r ,
5 NX, s i z e o f (v e c t o r [0])) ;

Data Interfaces

Multiple data types supported
Vector
Matrix
BCSR sparse matrix

Extensible data type set
– You can write your own, specifically tailored data type

Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, . . .)

O. Aumage – StarPU Runtime – 6. Data Management 81

1 f l o a t ma t r i x [NX⇤NY] ;
2 starpu_data_handle_t hand l e ;
3

4 s ta rpu_mat r i x_data_reg i s t e r (&handle , 0 , (u i n t p t r _ t) matr ix ,
5 NX , NX, NY, s i z e o f (m a t r i x [0])) ;

Data Interfaces

Multiple data types supported
Vector
Matrix
BCSR sparse matrix

Extensible data type set
– You can write your own, specifically tailored data type

Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, . . .)

O. Aumage – StarPU Runtime – 6. Data Management 81

1 . . .
2 starpu_data_handle_t hand l e ;
3

4 s t a r pu_ bcs r _ dat a_ r eg i s t e r (&handle , 0 , NNZ, NROW,
5 (u i n t p t r _ t) bcs r_matr ix_data ,
6 b c s r _ m a t r i x _ i n d i c e s , bcs r_matr i x_rowptr ,

f i r s t _ e n t r y ,
7 BLOCK_NROW, BLOCK_NCOL, s i z e o f (double)) ;

Data Interfaces

Multiple data types supported
Vector
Matrix
BCSR sparse matrix
Extensible data type set

– You can write your own, specifically tailored data type

Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, . . .)

O. Aumage – StarPU Runtime – 6. Data Management 81

Data Interfaces

Multiple data types supported
Vector
Matrix
BCSR sparse matrix
Extensible data type set

– You can write your own, specifically tailored data type
Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, . . .)

O. Aumage – StarPU Runtime – 6. Data Management 81

Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition æ Use æ Unpartition

O. Aumage – StarPU Runtime – 6. Data Management 82

Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition

æ Use æ Unpartition

O. Aumage – StarPU Runtime – 6. Data Management 82

1 i n t v e c t o r [NX] ;
2 starpu_data_handle_t hand l e ;
3 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (&handle , 0 , (u i n t p t r _ t) ve c to r ,
4 NX, s i z e o f (v e c t o r [0])) ;
5

6 /⇤ P a r t i t i o n the v e c t o r i n NB_PARTS sub≠v e c t o r s ⇤/

7 s t r u c t s t a r p u _ d a t a _ f i l t e r f i l t e r = {
8 . f i l t e r _ f u n c = s t a r p u _ v e c t o r _ f i l t e r _ b l o c k ,
9 . n c h i l d r e n = NB_PARTS

10 } ;
11 s t a r p u _ d a t a _ p a r t i t i o n (handle , & f i l t e r) ;
12

13 /⇤ Data can o n l y be a c c e s s e d through sub≠h a n d l e s now ⇤/

Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition æ Use

æ Unpartition

O. Aumage – StarPU Runtime – 6. Data Management 82

1 f o r (i =0; i <starpu_data_get_nb_chi ldren (hand l e) ; i ++) {
2 /⇤ Get subdata number i ⇤/

3 starpu_data_handle_t sub_handle =
4 starpu_data_get_sub_data (handle , 1 , i) ;
5

6 s t a r p u _ t a s k _ i n s e r t (
7 &s c a l _ c l ,
8 STARPU_RW , sub_handle ,
9 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,

10 0) ;
11 }

Partitioning

Splitting a piece of managed data into several handles
Granularity adjustment
Notion of filter

Partition æ Use æ Unpartition

O. Aumage – StarPU Runtime – 6. Data Management 82

1 /⇤ Wait f o r submi t t ed t a s k s to complete ⇤/

2 s ta rpu_task_wa i t_ fo r_a l l () ;
3

4 /⇤ U n p a r t i t i o n data ⇤/

5 s ta rpu_data_unpar t i t i on (handle , 0) ;
6

7 /⇤ Data can now be a c c e s s e d through ’ hand l e ’ o n l y ⇤/

Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

Partition planning
Asynchronous partition inforcement

O. Aumage – StarPU Runtime – 6. Data Management 83

Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps
Partition planning

Asynchronous partition inforcement

O. Aumage – StarPU Runtime – 6. Data Management 83

1 i n t v e c t o r [NX] ;
2 starpu_data_handle_t hand l e ;
3 s t a r pu _ vec t o r _ dat a_ r eg i s t e r (&handle , 0 , (u i n t p t r _ t) ve c to r ,
4 NX, s i z e o f (v e c t o r [0])) ;
5

6 /⇤ P a r t i t i o n the v e c t o r i n NB_PARTS sub≠v e c t o r s ⇤/

7 s t r u c t s t a r p u _ d a t a _ f i l t e r f i l t e r = {
8 . f i l t e r _ f u n c = s t a r p u _ v e c t o r _ f i l t e r _ b l o c k ,
9 . n c h i l d r e n = NB_PARTS

10 } ;
11 starpu_data_handle_t c h i l d r e n [NB_PARTS] ;
12 s t a r p u _ d a t a _ p a r t i t i o n _ p l a n (handle , &f i l t e r , c h i l d r e n) ;
13

14 /⇤ Data can o n l y be a c c e s s e d through sub≠h a n d l e s now ⇤/

Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps
Partition planning
Asynchronous partition inforcement

O. Aumage – StarPU Runtime – 6. Data Management 83

1 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
2 STARPU_RW , handle ,
3 STARPU_VALUE , &f a c t o r 1 , s i z e o f (f a c t o r 1) , 0) ;
4 s t a r p u _ d a t a _ p a r t i t i o n _ s u b m i t (handle , NB_PARTS, c h i l d r e n) ;
5 f o r (i =0; i <NB_PARTS; i ++) {
6 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
7 STARPU_RW , c h i l d r e n [i] ,
8 STARPU_VALUE , &f a c t o r 2 , s i z e o f (f a c t o r 2) ,
9 0) ;

10 }
11 s t a r p u _ d a t a _ u n p a r t i t i o n _ s u b m i t (handle , NB_PARTS, c h i l d r e n ,

node) ;
12 s t a r p u _ t a s k _ i n s e r t (& s c a l _ c l ,
13 STARPU_RW , handle ,
14 STARPU_VALUE , &f a c t o r 3 , s i z e o f (f a c t o r 3) , 0) ;

Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero æ Define op æ Reduce task contributions

O. Aumage – StarPU Runtime – 6. Data Management 84

Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero

æ Define op æ Reduce task contributions

O. Aumage – StarPU Runtime – 6. Data Management 84

1 vo id bzero_cpu (vo id ⇤ d e s c r [] , vo id ⇤ c l _ a r g) {
2 double ⇤ v_zero = (double ⇤) STARPU_VARIABLE_GET_PTR (d e s c r

[0]) ;
3 ⇤ v_zero = 0 . 0 ;
4 }
5

6 s t r u c t s ta rpu_code l e t b z e r o _ c l = {
7 . cpu_funcs = { bzero_cpu , NULL } ,
8 . n b u f f e r s = 1
9 } ;

Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero æ Define op

æ Reduce task contributions

O. Aumage – StarPU Runtime – 6. Data Management 84

1 vo id accumulate_cpu (vo id ⇤ d e s c r [] , vo id ⇤ c l _ a r g) {
2 double ⇤ v_dst = (double ⇤) STARPU_VARIABLE_GET_PTR (d e s c r

[0]) ;
3 double ⇤ v_src = (double ⇤) STARPU_VARIABLE_GET_PTR (d e s c r

[1]) ;
4 ⇤ v_dst = ⇤ v_dst + ⇤ v_src ;
5 }
6

7 s t r u c t s ta rpu_code l e t accumu la te_c l = {
8 . cpu_funcs = { accumulate_cpu , NULL } ,
9 . n b u f f e r s = 1

10 } ;

Reduction

Merge contributions from a set of tasks into a single bu�er
Define neutral element initializer
Define reduction operator

Define zero æ Define op æ Reduce task contributions

O. Aumage – StarPU Runtime – 6. Data Management 84

1 s t a r p u _ v a r i a b l e _ d a t a _ r e g i s t e r (&accum_handle , ≠1,
2 NULL , s i z e o f (type)) ;
3 starpu_data_set_reduct ion_methods (accum_handle ,
4 &accumu la te_c l , &b z e r o _ c l) ;
5

6 f o r (b = 0 ; b < n b l o c k s ; b++)
7 s t a r p u _ t a s k _ i n s e r t (& dot_ke rne l_c l ,
8 STARPU_REDUX , accum_handle ,
9 STARPU_R , starpu_data_get_sub_data (v1 , 1 , b) ,

10 STARPU_R , starpu_data_get_sub_data (v2 , 1 , b) ,
11 0) ;

Commutative Write Accesses

Write accesses enforce sequential consistency by default
– To strong for some kind of workloads
– N-body, unstructured meshes

Commute: allows a set of tasks to modify a bu�er in any order

O. Aumage – StarPU Runtime – 6. Data Management 85

Commutative Write Accesses

Write accesses enforce sequential consistency by default
– To strong for some kind of workloads
– N-body, unstructured meshes

Commute: allows a set of tasks to modify a bu�er in any order

O. Aumage – StarPU Runtime – 6. Data Management 85

Ready
Tasks

 - 9

Commutative Write Accesses

Write accesses enforce sequential consistency by default
– To strong for some kind of workloads
– N-body, unstructured meshes

Commute: allows a set of tasks to modify a bu�er in any order

O. Aumage – StarPU Runtime – 6. Data Management 85

1 s t a r p u _ t a s k _ i n s e r t (& c l1 ,
2 STARPU_R , handle0 ,
3 STARPU_RW , hand le ,
4 0) ;
5 s t a r p u _ t a s k _ i n s e r t (& c l2 ,
6 STARPU_R , handle1 ,
7 STARPU_RW | STARPU_COMMUTE , hand le ,
8 0) ;
9 s t a r p u _ t a s k _ i n s e r t (& c l2 ,

10 STARPU_R , handle2 ,
11 STARPU_RW | STARPU_COMMUTE , hand le ,
12 0) ;
13 s t a r p u _ t a s k _ i n s e r t (& c l3 ,
14 STARPU_R , handle3 ,
15 STARPU_RW , hand le ,
16 0) ;

O. Aumage – StarPU Runtime 86

7
Analysis and Monitoring

Feedback mechanisms

Online Tools
Statistics
Visual debugging

O�ine Tools
Trace-based analysis

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 87

O�ine Trace-Based Feedback

FxT trace collection
Trace analysis and display

– ViTE Gantt
– Graphviz DAG
– R plots

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 88

O�ine Feedback – Trace Analysis

Automatically generated
Dependency graph (DAG)
Activity diagramm (GANTT)

– Visualize with ViTE

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 89

O�ine Feedback – Kernel Model

Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display
History-based models
Regression-based models

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 90

O�ine Feedback – Kernel Model

Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display
History-based models
Regression-based models

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 90

1 $ s t a r p u _ p e r f m o d e l _ d i s p l a y ≠s starpu_s lu_lu_mode l_11
2

3 pe r fo rmance model f o r c p u 0 _ p a r a l l e l 1 _ i m p l 0
4 # hash s i z e mean (us) s tddev (us) n
5 aa6d4e f7 4194304 3.055501 e+05 5.804822 e+04 48

O�ine Feedback – Kernel Model Characteristics

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 91

O�ine Feedback – Kernel Model Regression Fitness

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 92

O�ine Feedback – Synthetic Kernels’ Behaviour

O. Aumage – StarPU Runtime – 7. Analysis and Monitoring 93

O. Aumage – StarPU Runtime 94

8
Distributed Computing

Distributed Support

O. Aumage – StarPU Runtime – 8. Distributed Computing 95

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Data¡Node Mapping
Provided by the application
Can be altered dynamically

node1node0 node3node2

Distributed Support

O. Aumage – StarPU Runtime – 8. Distributed Computing 96

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Inter-node dependence management
Inferred from the task graph edges
Automatic Isend and Irecv calls

POTRF

GEMM

TRSM

SYRK

Isend

Irecv

node1

node0

Distributed Support

O. Aumage – StarPU Runtime – 8. Distributed Computing 97

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task¡Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Optimization
Local DAG pruning

node1node0 node3node2

Irecv

Node 1

Distributed Scalability Study Results

Chameleon linear algebra library (Inria Team HiePACS)
Heterogeneous cluster: 1152 CPU cores+288 GPUs

O. Aumage – StarPU Runtime – 8. Distributed Computing 98

 1

 10

 100

 0 100000 200000 300000 400000

T
F

lo
p

/s

Matrix order (N)

DGEMM peak
STF / Chameleon
PTG / DPLASMA

CPU-only DGEMM peak
CPU-only STF / Chameleon
CPU-only PTG / DPLASMA

CPU-only MPI / ScaLAPACK

IEEE TPDS Paper:
DOI: 10.1109/TPDS.2017.2766064 — https://hal.inria.fr/hal-01618526

O. Aumage – StarPU Runtime 99

9
Interoperability and Composition

Composing Multiple Codes

Rationale

Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Composing Multiple Codes

Rationale
Sharing computing resources. . .

. . . among multiple DAGs

. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs

. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Context 1

Context 2

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts
Map DAGs on subsets of computing units

Isolate competing kernels or library calls
– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Context 1

Context 2

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts
Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Context 1

Context 2

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts
Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.
Select scheduling policy per context

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 100

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 101

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 101

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 101

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 101

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Interoperability

How to Make Runtimes, Libs Cooperate?

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 102

Interoperability

How to Make Runtimes, Libs Cooperate?

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 102

Interoperability

How to Make Runtimes, Libs Cooperate?

Project INTERTWinE (EU H2020, 3-years, 2015-2018)
– Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
– Networking APIs: MPI, GASPI
– Libraries: Plasma, DPlasma
– Applications

Cooperative resource allocation and management
– Cores
– Accelerators
– Memory
– Pinned memory segments
– ...

www.intertwine-project.eu

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 103

www.intertwine-project.eu

Interoperability

How to Make Runtimes, Libs Cooperate?

Project INTERTWinE (EU H2020, 3-years, 2015-2018)
– Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
– Networking APIs: MPI, GASPI
– Libraries: Plasma, DPlasma
– Applications

Cooperative resource allocation and management
– Cores
– Accelerators
– Memory
– Pinned memory segments
– ...

www.intertwine-project.eu

O. Aumage – StarPU Runtime – 9. Interoperability and Composition 103

www.intertwine-project.eu

This project is funded from the European Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement no. 671602.

Resource Management APIs
Olivier Aumage (Inria), Vicenç Beltran & Xavier Teruel (BSC)

http://www.intertwine-project.eu

INTERTWinE

• Co-design methodology
• Define interoperability requirements,

implement+evaluate, drive new requirements
• Work with real applications

• Computational Resource Management
• Coordinated resource sharing for interoperability

between runtime systems, libraries

• Distributed Data Management
• Scalable, transparent data sharing on

heterogeneous, distributed memory hierarchies

• Engagement with HPC community
• Standards bodies: OpenMP, MPI, GASPI
• Courses, workshops and Best Practice Guides

http://www.intertwine-project.eu

Interoperability between programming models
for scalable performance on extreme-scale supercomputers

Follow INTERTWinE on Twitter: @intertwine_eu

Linear Algebra

Big Data analytics

CFD

Complex Fluids

Space Plasma

Computational Resource Management
Objectives

• Implement a Resource Management API to share computing resources
between parallel applications, libraries and runtime systems

Parallel	Application

TBB	RTL

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

StarPU	RTL OmpSs	RTLOpenMP

Dynamic	Resource	Sharing lendborrow

User	APIs

RTL	APIs

MKL
OpenCL	Offload

Native		Offload	&	RE
Pause/Resume

PLASMA
OpenCL		Off.
Nat.		Off.	&	RE
Pause/Resume

Chameleon

Native	Offload	&	RE
Pause/Resume

Motivation
Sequential applications + parallel libraries

• Fork-join pattern
Sequential	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Motivation
Sequential applications + parallel libraries

• Fork-join pattern
Sequential	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Sequential	
Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

dpotrf()

Motivation
Sequential applications + parallel libraries

• Fork-join pattern

• No over-subscription, but most CPUs
underutilized on sequential parts

Sequential	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Sequential	
Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

dpotrf()

Motivation
Parallel application + parallel libraries

Parallel	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Motivation
Parallel application + parallel libraries

Parallel	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

dpotrf()

• Uncoordinated access to CPU cores

Motivation
Parallel application + parallel libraries

Parallel	Application

MKL

PLASMA

CPU CPU CPUCPU CPU CPU

Application PLASMA MKL

dgemm()

0 1 2 3 4 5

CPU	USAGE

dpotrf()

• Uncoordinated access to CPU cores

• Oversubscription
• Cache pollution
• Higher number of context switches

Interoperable node-level resource sharing

Computational Resource Sharing

• Multiple codes compete for CPU cores, accelerator devices on cluster nodes
• Application threads
• Numerical libraries threads
• Runtime systems threads
• Communication library threads

Interoperable node-level resource sharing

Computational Resource Sharing

• Multiple codes compete for CPU cores, accelerator devices on cluster nodes
• Application threads
• Numerical libraries threads
• Runtime systems threads
• Communication library threads

• Interference leads to resource over-subscription or under-subscription on cluster nodes
• Interoperability?

Interoperable node-level resource sharing

Computational Resource Sharing

• Multiple codes compete for CPU cores, accelerator devices on cluster nodes
• Application threads
• Numerical libraries threads
• Runtime systems threads
• Communication library threads

• Interference leads to resource over-subscription or under-subscription on cluster nodes
• Interoperability?

• Need coordinated resource sharing:
• Ability to express general resource needs
• Ability to express dynamic resource requirements:

• computational-heavy periods, idleness periods

Interoperable node-level resource sharing

Computational Resource Sharing

• Multiple codes compete for CPU cores, accelerator devices on cluster nodes
• Application threads
• Numerical libraries threads
• Runtime systems threads
• Communication library threads

• Interference leads to resource over-subscription or under-subscription on cluster nodes
• Interoperability?

• Need coordinated resource sharing:
• Ability to express general resource needs
• Ability to express dynamic resource requirements:

• computational-heavy periods, idleness periods

à INTERTWinE Resource Management APIs

Resource Manager Overview

• Implement a Resource Manager to share CPU resources between
parallel application, libraries and runtime systems

Parallel	Application

TBB	RTL

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

StarPU	RTL OmpSs	RTLOpenMP

Dynamic	Resource	Sharing lendborrow

User	APIs

RTL	APIs

MKL
OpenCL	Offload

Native		Offload	&	RE
Pause/Resume

PLASMA
OpenCL		Off.
Nat.		Off.	&	RE
Pause/Resume

Chameleon

Native	Offload	&	RE
Pause/Resume

Resource Manager APIs
Native offload and resource enforcement API

Coordinated execution of a parallel library kernel from a parallel application

Resource Manager APIs
Native offload and resource enforcement API

Application PLASMA OmpSs

dgemm()

0 1 2 3 4 5

CPU	USAGE

off(ker,	 mask))

Coordinated execution of a parallel library kernel from a parallel application

• Each runtime has its own (similar) asynchronous API:
• Nanos6

void nanos_spawn_function(
void (*function)(void *),
void *args,
void (*completion_callback)(void *),
void *completion_args,
char const *label,
cpu_set_t *cpu_mask)

• StarPU
void starpurm_spawn_kernel_on_cpus_callback(

void *data,
void(*f)(void *),
void *args,
hwloc_cpuset_t cpuset,
void(*cb_f)(void *),
void *cb_args)

Resource Manager APIs
Native offload and resource enforcement API

• MatMul: 16 CPUs
• Outermost task: block size 4K, 4 CPUs assigned to each task
• Innermost task: block size 512 bytes

• When there is only one level of tasks, high performance is not
achieved until matrix is very big

Resource Manager APIs
Performance evaluation of Native (and OpenCL) offloading API

Resource Manager APIs
Dynamic Resource Sharing (DRS)

Application PLASMA
(OpenMP)

MKL
(TBB)

dgemm()

0 1 2 3 4 5

CPU	USAGEDRS

borrow()

lend	() lend	()

reclaim()
borrow()

enable()

disable
dpotrf()

lend() enable()

lend()

Ø See StarPU dynamic resource management animation

Resource Manager APIs
Dynamic Resource Sharing (DRS)

Accelerator Resource Management

• Dynamic Resource Sharing API extended for devices
• Device sharing routines

• Lend/Reclaim device
• Acquire/Return device

Accelerator Resource Management

• Dynamic Resource Sharing API extended for devices
• Device sharing routines

• Lend/Reclaim device
• Acquire/Return device

• StarPU’s Resource Manager implementation extended to
support devices
• Device types supported

• CUDA devices
• OpenCL devices
• (Xeon Phi KNC accelerator devices)

Accelerator Resource Management

• Dynamic Resource Sharing API extended for devices
• Device sharing routines

• Lend/Reclaim device
• Acquire/Return device

• StarPU’s Resource Manager implementation extended to
support devices
• Device types supported

• CUDA devices
• OpenCL devices
• (Xeon Phi KNC accelerator devices, …)

• Dynamic notifications
• Device becoming idle, from the runtime point of view
• Device becoming needed, from the runtime point of view
• Could be interfaced with DLB as for the CPU support.

INTERTWinE – Resource Management APIs

• Exascale Scheme
• Parallel application + Parallel libraries

• Need for coordinated access to computing resources
• Avoid undersubscription, oversubscription, idleness

• Interoperability

INTERTWinE – Resource Management APIs

• Exascale Scheme
• Parallel application + Parallel libraries

• Need for coordinated access to computing resources
• Avoid undersubscription, oversubscription, idleness

• Interoperability

INTERTWinE Resource Management APIs
• Kernel offload and resource enforcement APIs
• Native & via OpenCL

• Dynamic resource sharing API
• (Pause/Resume API)

INTERTWinE:
Programming Model INTERoperability ToWards Exascale

Visit http://www.intertwine-project.eu to find out about our:

• Best Practice Guides:
• Writing GASPI-MPI Interoperable Programs
• MPI + OpenMP Programming
• MPI + OmpSs Interoperable Programs
• Open MP/OmpSs/StarPU + Multi-threaded Libraries Interoperable Programs

• “Developer Hub” of resources for developers & application users

…and to sign up for the latest news from INTERTWinE at
http://www.intertwine-project.eu/newsletter

http://www.intertwine-project.eu

O. Aumage – StarPU Runtime 104

10
Advanced Scheduling Topics

Multicore CPUs: Parallel Tasks

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 105

Multicore CPUs: Parallel Tasks (T. Cojean)

Kernel sweet spots: example with Cholesky factorization kernels
(1x Xeon E5-2680v3 2.5GHz 12 cores)

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 106

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
● ●

●
●

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

0 1 2 3 4 5 6 7 8 9 10 11 12
number of threads

G
Fl

op
/s

Kernel ●●●● ●●●● ●●●● ●●●●GEMM POTRF SYRK TRSM

Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 107

Cores

Task

Task DAG

Execution

Ti
m

e

Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 107

Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 107

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads

– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 108

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads

– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 108

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads

– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 108

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads

– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 108

Submission-side Task Flow Optimizations

Global task-graph pruning in distributed computing sessions
Memory subscription control

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 109

Distributed Scalability Study Results

Chameleon linear algebra library (Inria Team HiePACS)
Heterogeneous cluster: 1152 CPU cores+288 GPUs

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 110

 1

 10

 100

 0 100000 200000 300000 400000

T
F

lo
p

/s

Matrix order (N)

DGEMM peak
STF / Chameleon
PTG / DPLASMA

CPU-only DGEMM peak
CPU-only STF / Chameleon
CPU-only PTG / DPLASMA

CPU-only MPI / ScaLAPACK

IEEE TPDS Paper:
DOI: 10.1109/TPDS.2017.2766064 — https://hal.inria.fr/hal-01618526

Distributed Support

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 111

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task¡Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Optimization
Local DAG pruning

node1node0 node3node2

Irecv

Node 1

Global Task-Graph Pruning Issue

 0.1

 1

 10

 100

 1000

 10 100

T
im

e
(s

)
o
r

n
u
m

b
e
r

o
f
ta

sk
s

(m
ill

io
n
s)

Number of nodes

non-pruned submission time
pruned submission time

total tasks
submitted tasks

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 112

Unbounded Task Submission Issue

 500

 1000

 2000

 4000

 6000

 10000

 20000

 40000

 60000
 80000

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

Time (s)

Total memory

Out Of Memory

StarPU’s view of allocated memory
Memory physically allocated

Local matrix memory

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 113

Implementing Some Scheduling Lookahead Window

Control of the task submission flow

Memory tracking
– Account the memory subscription

Task submission throttling
– Blocking mechanism of the task submission flow
– Allows the task submission to be controlled by an external criteria

A control policy which uses the memory tracking to throttle the task
submission flow

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 114

Memory Behaviour Without Memory Control

 500

 1000

 2000

 4000

 6000

 10000

 20000

 40000

 60000
 80000

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

Time (s)

Total memory

Out Of Memory

StarPU’s view of allocated memory
Memory physically allocated

Local matrix memory

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 115

Memory Behaviour With Memory Control

 500

 1000

 2000

 4000

 6000

 10000

 20000

 40000

 60000
 80000

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

Time (s)

Total memory
StarPU’s view of allocated memory

Memory physically allocated
Local matrix memory

O. Aumage – StarPU Runtime – 10. Advanced Scheduling Topics 116

O. Aumage – StarPU Runtime 117

11
Advanced Data Management Topics

Advanced Data Management

Heterogeneous data layout
Multiformat support

Large workloads
Out-of-core support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 118

Advanced Data Management

Heterogeneous data layout
Multiformat support

Large workloads
Out-of-core support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 118

Advanced Data Management

Heterogeneous data layout
Multiformat support

Large workloads
Out-of-core support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 118

Data Layout

Heterogeneous platforms
Heterogeneous data layout requirements
Example:

– Arrays of Structures (AoS), for CPU cache locality
– vs Structures of Arrays (SoA), for GPU coalesced memory accesses
– vs Arrays of Structures of Arrays (AoSoA), for MIC/Xeon Phi
– . . . any other data layout

StarPU enables Multiformat kernel implementations
User-provided data layout conversion codelets. . .
. . . automatically called upon transfers between devices

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 119

Data Layout

Heterogeneous platforms
Heterogeneous data layout requirements
Example:

– Arrays of Structures (AoS), for CPU cache locality
– vs Structures of Arrays (SoA), for GPU coalesced memory accesses
– vs Arrays of Structures of Arrays (AoSoA), for MIC/Xeon Phi
– . . . any other data layout

StarPU enables Multiformat kernel implementations
User-provided data layout conversion codelets. . .
. . . automatically called upon transfers between devices

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 119

Multiformat

Example
Declare conversion codelets

Array of structures for CPU
Structure of arrays for NVidia CUDA GPU

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 120

1 /⇤ C o n v e r s i o n c o d e l e t s ⇤/

2 s t r u c t s t a r p u _ m u l t i f o r m a t _ d a t a _ i n t e r f a c e _ o p s format_ops = {
3 . cuda_e l ems i ze = 2 ⇤ s i z e o f (f l o a t) ,
4 . cpu_to_cuda_cl = &cpu_to_cuda_cl ,
5

6 . cuda_to_cpu_cl = &cuda_to_cpu_cl ,
7 . cpu_e l ems i ze = 2 ⇤ s i z e o f (f l o a t) ,
8 . . .
9 } ;

10

11 /⇤ M u l t i f o r m a t hand l e r e g i s t r a t i o n ⇤/

12 s t a r p u _ m u l t i f o r m a t _ d a t a _ r e g i s t e r (handle , 0 ,
13 &a r r a y _ o f _ s t r u c t s , NX, &format_ops) ;

Multiformat

Example
Declare conversion codelets
Array of structures for CPU

Structure of arrays for NVidia CUDA GPU

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 120

1 /⇤ CPU Computat ion Ke rne l ⇤/

2

3 vo id
4 mu l t i f o rmat_sca l_cpu_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
5 s t r u c t p o i n t ⇤ aos ;
6 uns igned i n t n ;
7

8 aos = STARPU_MULTIFORMAT_GET_CPU_PTR(b u f f e r s [0]) ;
9 n = STARPU_MULTIFORMAT_GET_NX(b u f f e r s [0]) ;

10 . . .
11 }

Multiformat

Example
Declare conversion codelets
Array of structures for CPU
Structure of arrays for NVidia CUDA GPU

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 120

1 /⇤ GPU Computation Ke rne l ⇤/

2

3 ex te rn "C" vo id
4 mu l t i f o rmat_sca l_cuda_func (vo id ⇤ b u f f e r s [] , vo id ⇤ c l _ a r g) {
5 uns igned i n t n ;
6 s t r u c t s t r u c t _ o f _ a r r a y s ⇤ soa ;
7

8 soa = (s t r u c t s t r u c t _ o f _ a r r a y s ⇤)
9 STARPU_MULTIFORMAT_GET_CUDA_PTR(b u f f e r s [0]) ;

10 n = STARPU_MULTIFORMAT_GET_NX(b u f f e r s [0]) ;
11

12 . . .
13 }

Large workloads

Using disks as StarPU memory nodes
Out-of-Core

Enable StarPU to evict temporarily unused data to disk

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 121

Large workloads

Using disks as StarPU memory nodes
Out-of-Core
Enable StarPU to evict temporarily unused data to disk

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 121

Large workloads

Using disks as StarPU memory nodes
Out-of-Core

Enable StarPU to evict temporarily unused data to disk

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 122

Large workloads

Using disks as StarPU memory nodes
Out-of-Core
Enable StarPU to evict temporarily unused data to disk

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 122

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – StarPU Runtime – 11. Advanced Data Management Topics 123

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

Disk

GPU1CPU

CPU GPU0

MEM

O. Aumage – StarPU Runtime 124

12
Advanced Analysis and Monitoring Topics

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 125

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 125

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3

4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8

9

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 125

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3 starpu_bound_start () ;
4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8 starpu_bound_stop () ;
9

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 125

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3 starpu_bound_start () ;
4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8 starpu_bound_stop () ;
9 starpu_bound_pr int_lp () ;

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 125

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3 starpu_bound_start () ;
4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8 starpu_bound_stop () ;
9 starpu_bound_pr int_lp () ;

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 126

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 126

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3

4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8

9

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 126

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3 starpu_bound_start () ;
4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8 starpu_bound_stop () ;
9

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 126

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3 starpu_bound_start () ;
4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8 starpu_bound_stop () ;
9 starpu_bound_pr int_lp () ;

10 . . .

Computing the Theoretical Lower Bound. . .

. . . on Execution Time
Have realistic expectations from the scheduler
Identify issues

– Abnormal overhead
– Bugs

Generate a Linear Programming problem. . .
– . . . to be solved externally (lp_solve, etc.)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 126

1 i n t r e t = s t a r p u _ i n i t (NULL) ;
2 . . .
3 starpu_bound_start () ;
4 s t a r p u _ t a s k _ i n s e r t (. . .) ;
5 s t a r p u _ t a s k _ i n s e r t (. . .) ;
6 . . .
7 s ta rpu_task_wa i t_ fo r_a l l () ;
8 starpu_bound_stop () ;
9 starpu_bound_pr int_lp () ;

10 . . .

Simulation with SimGrid

Scheduling without executing kernels
Requires the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .
. . . collected by StarPU on a real machine

Enables fast experiments when designing application algorithms
Enables fast experiments when designing scheduling algorithms

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 127

1 $ $STARPU_DIR/ c o n f i g u r e ≠≠enab le ≠s i m g r i d [. . . o t h e r opt s . . .]
2 . . .

Simulation with SimGrid

Scheduling without executing kernels
Requires the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .
. . . collected by StarPU on a real machine

Enables fast experiments when designing application algorithms
Enables fast experiments when designing scheduling algorithms

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 127

1 $ $STARPU_DIR/ c o n f i g u r e ≠≠enab le ≠s i m g r i d [. . . o t h e r opt s . . .]
2 . . .

Simulation with SimGrid

Scheduling without executing kernels
Requires the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .
. . . collected by StarPU on a real machine

Enables fast experiments when designing application algorithms
Enables fast experiments when designing scheduling algorithms

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 127

1 $ $STARPU_DIR/ c o n f i g u r e ≠≠enab le ≠s i m g r i d [. . . o t h e r opt s . . .]
2 . . .

Simulation accuracy with SimGrid

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 128

Simulation with StarPU/SimGrid (L. Stanisic)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 129

Hannibal: 3 QuadroFX5800 Attila: 3 TeslaC2050 Mirage: 3 TeslaM2070 Conan: 3 TeslaM2075

0

1000

2000

3000

4000

0

1000

2000

3000

4000

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
FL

O
PS

Frogkepler: 2 K20 Pilipili2: 2 K40 Idgraf: 8 TeslaC2050

0

1000

2000

3000

4000

0

1000

2000

3000

4000

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
FL

O
PS

Experimental
Condition

SimGrid
Native

Simulation with StarPU/SimGrid (L. Stanisic)

O. Aumage – StarPU Runtime – 12. Advanced Analysis and Monitoring Topics 130

O. Aumage – StarPU Runtime 131

13
Conclusion

Conclusion

StarPU

A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Async. Task Submission + Inferred Dependencies
Execution Model: Scheduler + Distributed Shared Memory

The key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance

O. Aumage – StarPU Runtime – 13. Conclusion 132

Conclusion

StarPU

A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Async. Task Submission + Inferred Dependencies

Execution Model: Scheduler + Distributed Shared Memory

The key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance

O. Aumage – StarPU Runtime – 13. Conclusion 132

Conclusion

StarPU

A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Async. Task Submission + Inferred Dependencies
Execution Model: Scheduler + Distributed Shared Memory

The key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance

O. Aumage – StarPU Runtime – 13. Conclusion 132

Conclusion

StarPU

A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Async. Task Submission + Inferred Dependencies
Execution Model: Scheduler + Distributed Shared Memory

The key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance

O. Aumage – StarPU Runtime – 13. Conclusion 132

O. Aumage – StarPU Runtime 133

Thanks for your attention.

StarPU runtime system
Web Site: http://starpu.gforge.inria.fr/
LGPL License

Open to external contributors

http://starpu.gforge.inria.fr/

