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Hardware Evolution

More capabilities, more complexity

Display
= Higher resolutions
= 2D acceleration
= 3D rendering
Networking
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« Zero-copy transfers
= Hardware multiplexing
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Technology Dilemma for the Application Programmer

Stay conservative?

= Only use long established features

— Display: Basic graphics or terminal output
— Networking: Unix systems calls, TCP sockets
— 1/0: Unix systems calls, read/write

« Under-used hardware?

« Low performance?
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Technology Dilemma for the Application Programmer

Use tempting, bleeding edges features?
= Efficiency
= Convenience
= Portability?
— What if the application is used on different hardware?

« Adaptiveness?
— What if hardware resource availability/capacity is higher? Lower?

= Cost?
— Is it worthwhile to use such “specific” features?
« Long-term viability?
= Vendor-tied code?
— Is it worthwhile to invest into porting on such platforms?

1. Runtime Systems



Technology Dilemma for the Application Programmer

Answer: Use runtime systems!
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1.1

Principles of Runtime Systems
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Technology Dilemma for the Application Programmer
Answer: Use runtime systems!

The Role(s) of Runtime Systems
= Portability
= Control
= Adaptiveness

= Optimization
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Examples of Runtime Systems

Networking
« MPI (Message Passing Interface), Global Arrays
- GASPI / GPI-2
= GASNet, CCI
=« Distributed Shared Memory systems
« SHMEM
Graphics
= DirectX, Direct3D (Microsoft Windows)
= OpenGL
1/0
= MPI-IO
« HDF5 libraries
= Database engines
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The Role(s) of Runtime Systems: Portability

= Abstraction

— Uniform front-end layer
— Device-independent API
— Targeted by applications
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= Drivers, plugins
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The Role(s) of Runtime Systems: Portability

= Abstraction

— Uniform front-end layer
— Device-independent API
— Targeted by applications

= Drivers, plugins

— Device-dependent backend layer
— Targeted by vendors and/or device specialist

= Decoupling applications from device specific matters

* Hardware Devices
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The Role(s) of Runtime Systems: Control
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The Role(s) of Runtime Systems: Control

= Resource mapping

— Deciding which hardware resource to use/not to use for some application
workload
— Spatial work mapping
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The Role(s) of Runtime Systems: Control

= Resource mapping

— Deciding which hardware resource to use/not to use for some application
workload
— Spatial work mapping

« Scheduling

— Deciding when and in which order to perform some application workload
— Temporal work mapping

= Plan application workload execution
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= Discovering, sampling, calibrating
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The Role(s) of Runtime Systems: Adaptiveness

= Discovering, sampling, calibrating
— Detecting qualitative hardware capabilities
— Providing fallbacks, when possible
— Detecting quantitative hardware capabilities

= Monitoring, load balancing

— Throttling workload feed
— Reacting to hardware status changes

= Cope with effective hardware aptitude and performance level
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1. Runtime Systems



The Role(s) of Runtime Systems: Optimization

. Capitalize on workload look-ahead to bring performance-oriented added
value
— Requests aggregation
— Resource locality
— Computation offload
— Computation/transfer overlap
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The Role(s) of Runtime Systems: Optimization

. Capitalize on workload look-ahead to bring performance-oriented added
value

— Requests aggregation

— Resource locality

— Computation offload

— Computation/transfer overlap

= Take advantage of the cross-cutting point of view of the runtime system
— Perform global optimizations when possible
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The Role(s) of Runtime Systems: Optimization

. Capitalize on workload look-ahead to bring performance-oriented added
value

— Requests aggregation

— Resource locality

— Computation offload

— Computation/transfer overlap

= Take advantage of the cross-cutting point of view of the runtime system
— Perform global optimizations when possible

« Out-weight the cost of an extra, intermediate software layer
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1.2

Runtime Systems for Computing
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Evolution of Computing Hardware
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= Looking for other sources of performance
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Evolution of Computing Hardware

Rupture
= The “Frequency Wall”

— Processing units cannot run anymore faster

= Looking for other sources of performance

Hardware Parallelism
= Multiply existing processing power
— Have several processing units work together

= Not a new idea. ..

« ...but definitely the key performance factor now
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Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator
Generalization

1. Runtime Systems

00 oo
00 oo
od oo
oo oo

>

Application

o
o
(=
o
b
c

I
_ﬁ GPU

| —

Heterogeneous Parallel Platform




Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator

Generalization
« Distributed cores, discrete accelerators
— Standalone GPUs
— Intel Xeon Phi (KNC) Application
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Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator
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= Integrated cores
— Intel Skylake / Kaby Lake — —
— Intel Xeon Phi (KNL) e cpy = cpy
— AMD Fusion __ | (—

— nVidia Tegra, ARM big.LITTLE
= Combination of various units

— Latency-optimized cores
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— Energy-optimized cores
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Heterogeneous Computing Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator
Generalization

« Distributed cores, discrete accelerators \_/\_/\/

— Standalone GPUs

— Intel Xeon Phi (KNC) Application
= Integrated cores

— Intel Skylake / Kaby Lake — —

— Intel Xeon Phi (KNL) = cpy === cpy mmmmj

— AMD Fusion — = . —

— nVidia Tegra, ARM big.LITTLE
= Combination of various units

— Latency-optimized cores

— Throughput-optimized cores

— Energy-optimized cores
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= Overall increased parallelism diversity
— Multiprocessors, multicores
— Vector processing extensions
— Accelerators

Heterogeneous Parallel Platform
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Example: CPU vs GPU Hardware [ °™

Multiple strategies for multiple purposes Control E E

- CPU

— Strategy Cache

— Large caches
— Large control

— Purpose

— Complex codes, branching
— Complex memory access patterns

— World Rally Championship car
. GPU
— Strategy

Lot of computing poner SHENENNNNYNY

~ Simplified control
— Purpose

— Regular data parallel codes
— Simple memory access patterns

— Formula One car

~ GPU
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Accelerators
Special purpose computing devices
(or general purpose GPUs)
= (initially) a discrete expansion card

= Rationale: dye area trade-off
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Accelerators
Special purpose computing devices
(or general purpose GPUs)
= (initially) a discrete expansion card

= Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
= A single control unit. ..

« ... for several computing units

SIMT is distinct from SIMD
= Allows flows to diverge
« ... but better avoid it!

1. Runtime Systems
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Problematics

Unified computing runtime system for heterogeneous platforms
= Portability of performance

— Abstraction

— Adaptiveness

— Execution Control
— Optimization

Need a way to abstract application execution. ..

...into elementary, manageable objects
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1.3

Abstracting Application Workload

-
-
&LW 0. Aumage — StarPU Runtime




Thread Scheduling

Reasoning on Thread objects?

Thread
« One instruction flow

— Unbounded flow
— Parallel activity

= One state/context per thread
— Stack
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Thread Scheduling

Reasoning on Thread objects?

Thread « Examples
= One instruction flow — OpenMP parallel regions
— Unbounded flow — libpthread
— Parallel activity — C++ threads
= One state/context per thread
— Stack —
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Thread Scheduling

Reasoning on Thread objects?

Thread « Examples
= One instruction flow — OpenMP parallel regions
— libpthread

— Unbounded flow
— Parallel activity

= One state/context per thread

— C—++ threads

— Stack M
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Application
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Thread Scheduling

Reasoning on Thread objects?

Thread
« One instruction flow

— Unbounded flow
— Parallel activity

= One state/context per thread
— Stack M

¢ _/
O@EE0E

Application

« Examples
— OpenMP parallel regions
— libpthread
— CH+ threads

" Parallel Platform
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Threads: Resources vs Needs

Lack of abstraction
= Threads express explicit resource request

. instead of application requirements
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Threads: Resources vs Needs

Lack of abstraction
= Threads express explicit resource request

. instead of application requirements
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Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads
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Software vs hardware mismatch
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= Fixed number of threads
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Threads: Resources Miss-subscription

Software vs hardware mismatch
= Over-subscription
= Under-subscription

= Fixed number of threads
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Threads: Lack of Semantics

What does a thread really do?
= Resource usage?
= Inter-thread constraints

= Chaining constraints, ordering?

Planning Issues
« Unbounded computation

= System-controlled context switches

Consequences
= Heavy synchronizations: barriers
= User-managed fine-grain synchronizations: locks, mutexes

= Little to no help from runtime system

1. Runtime Systems



Threads: Load Balancing Issues

Keeping every hardware unit busy
= Irregular application, workload
= Uncontrolled synchronization shift

= Heterogeneous platforms: accelerators, GPU
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Threads: Load Balancing Issues

Keeping every hardware unit busy
= Irregular application, workload
= Uncontrolled synchronization shift

= Heterogeneous platforms: accelerators, GPU
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Threads: Networking and 1/O Issues

= Computation/communication overlapping?
= Bulk I/O / network transfer mitigation?

= Thread-level idle time reduction?

1. Runtime Systems
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= Computation/communication overlapping?
= Bulk I/O / network transfer mitigation?

= Thread-level idle time reduction?
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Threads: Networking and 1/O Issues

= Computation/communication overlapping?
= Bulk I/O / network transfer mitigation?

= Thread-level idle time reduction?

OEOO&E
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. Dooom
OFEOE -
0E00
Application ~— T
Join Fork
: 1 _ :: * Parallel Platform
I
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Threads: Outcome

Perhaps not the right semantics for end-user application development

= Over-constrained concept for application programming

= Awkward object to manipulate at the runtime system level

= Not well suited to leverage theoretical scheduling results
— Completion?
— Other metrics?

1. Runtime Systems



Task Scheduling

. . Input dependencies A DE DE B
Reasoning on Task objects Ek j
Common definition Computation kernel A = A+B

- Elementary computation

— Numerical kernel
— BLAS call

Output dependencies ABEQ

« — Potential parallel work

" Task = an « elementary »

i —
putation +
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Task Scheduling

. . Input dependencies AHS EHHs
Reasoning on Task objects EK j
Common definition Computation kernel A =A+B
- Elementary computation
— Numerical kernel
— BLAS call Output dependencies A EE
« — Potential parallel work X Task = an « elementary » computation + depend —

= Constraints
— Input needed
— Output produced
— — Dependencies
— No side effect (no hidden dependencies)

« — Degrees of Freedom in realizing the potential parallelism
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Task Scheduling

. . Input dependencies AHS EHHs
Reasoning on Task objects EK j
Common definition Computation kernel A =A+B
- Elementary computation
— Numerical kernel
— BLAS call Output dependencies A EE
« — Potential parallel work W T T S T —

= Constraints

— Input needed

— Output produced

— — Dependencies

— No side effect (no hidden dependencies)

« — Degrees of Freedom in realizing the potential parallelism

= Shared (often fixed) pool of worker threads
=« — Decoupled engine, to realize a potentially parallel execution

1. Runtime Systems



Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)

The runtime remains free to decide the amount of resources to execute a task

= Rationalize resource consumption

— Thread and associated stack reused among several tasks
. Enforce separation of concerns

— Management code brought out of the application
= Open the way to resource allocation optimization

— Cross-cutting view of the application requirements
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Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)

The runtime remains free to decide the amount of resources to execute a task

= Rationalize resource consumption
— Thread and associated stack reused among several tasks

. Enforce separation of concerns
— Management code brought out of the application
= Open the way to resource allocation optimization
— Cross-cutting view of the application requirements

* Parallel Platform

-
-
l &Z/ZM/— 1. Runtime Systems



Tasks: Resources Miss-subscription?

The runtime system may initialize a pool of worker threads according to the
hardware capabilities

The application submit tasks independently to the runtime, independently of the
hardware capabilities

« Tasks submitted by the application according to its natural algorithm
— Abstraction with respect to hardware

= Workers allocated according to hardware resource, topology
— Typically one thread per core or per hardware thread

« Operating system scheduler interference largely eliminated
— No competition between worker threads

1. Runtime Systems




Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge
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The runtime system can take advantage of this knowledge

= Optimize spatial resource usage
— Decide which computing resource is best suited for a given task
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The runtime system can take advantage of this knowledge
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— Decide which computing resource is best suited for a given task
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Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

= Optimize spatial resource usage

— Decide which computing resource is best suited for a given task
= Optimize temporal resource usage

— Decide in which order to execute tasks

« Optimize concurrent resource usage
— Decide which pairs of tasks to execute in parallel

* Parallel Platform
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Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

= Optimize spatial resource usage

— Decide which computing resource is best suited for a given task
= Optimize temporal resource usage

— Decide in which order to execute tasks
« Optimize concurrent resource usage

— Decide which pairs of tasks to execute in parallel

= No lock directly manipulated by the application

1. Runtime Systems



Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield
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Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield

CPU
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Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield
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Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

« Flexibility
— No need for all tasks to have a uniform duration
— Naturally opens the way to heterogeneous computations, accelerated offloads

= Transparency
— No need for explicit yield
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Application
Heterogeneous Parallel Platform
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Tasks: Networking and 1/0 Issues?

Potential 1-to-1 relationship between tasks and network/IO requests

= Network/IO request may start as soon as the task producing the data has
been completed

= Tasks may be triggered as the result of network/lO requests completion

= Significant difference with fork-join models, MPI+X
— Transparent interoperability
— Avoid deferred network/IO requests until next join
— Avoid custom network/IO requests management inside the application code

1. Runtime Systems



Tasks: Outcome
Task = Characterizable work

= Well-defined
— Workload
— Completion
— Dependencies
— Similar to the pure function concept from Functional programming domain

=« Suitable object for modelling
— Constraints
— Degrees of freedom
— Large corpus of task scheduling theory

. Enforcing separation of concerns
— Application specialist
— Kernel(s) specialist
— Scheduling theoretician specialist
— Runtime-system specialist

1. Runtime Systems



Programming Modern Platforms using Tasks

See second part: Programming Modern Platforms with the StarPU Task-Based
Runtime System

Rich set of existing task-based programming models and associated runtime
systems

« DuctTeip

= Legion

« OCR

« OpenMP 4.x

= OmpSs

« ParalleX

= PaRSEC

= Swan

=« Uintah/Kokkos

= XKaapi

1. Runtime Systems



The StarPU Task-Based Runtime System

-
-
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Heterogeneous Parallel Platforms

Heterogeneous Association
= General purpose processor
= Specialized accelerator

Generalization
= Distributed cores, discrete accelerators
— Standalone GPUs
— Intel Xeon Phi (KNC)
=« Integrated cores
— Intel Skylake / Kaby Lake
— Intel Xeon Phi (KNL)
— AMD Fusion
— nVidia Tegra, ARM big.LITTLE
= Combination of various units
— Latency-optimized cores

— Throughput-optimized cores
— Energy-optimized cores
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oo oo
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>

Application
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Heterogeneous Parallel Platform



Task Scheduling

Task Input dependencies A E@ jE‘E B
« Elementary computation ¥
— Some kernel Computation kernel A =A+B
. — Potential parallel work
. Constraints Output dependencies ABEQ
— Input needed
— Output produced " Task = an « elementary » computation + depend. |

— — Dependencies

. — Degrees of Freedom in realizing the potential parallelism




Task Scheduling

Task Input dependencies A E@ jE‘E B
« Elementary computation '
— Some kernel Computation kernel A =A+B
. — Potential parallel work
. Constraints Output dependencies ABEQ
— Input needed
— Output produced " Task = an « elementary » computation + depend. |

— — Dependencies

. — Degrees of Freedom in realizing the potential parallelism

Expressing tasks?
= Divide and conquer: Cilk (recursive tasks)

= Dependencies compiler: PaRSEC (parameterized task graph)

= Sequential task flow: StarPU (directed acyclic task graph)

l(}z,



StarPU Programming Model: Sequential Task Flow

= Express parallelism...

= ... using the natural program flow

= Submit tasks in the sequential flow of the program...

= ... then let the runtime schedule the tasks asynchronously

2. The StarPU Runtime



Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

POTRF ( A[jI1[iD);

for (i = j+1; i < N; i++)
TRSM (  A[i1[31, A[j1051);

for (i = j+1; i < N; i++) {
SYRK (  A[il[il, A[i1051);
for (k = j+1; k < i; kt++)

GEMM (  A[il[k],
ALl [51, AL




Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

POTRF (RW,A[j1[j1);

for (i = j+1; i < N; i++)
TRSM (RW,A[i]1[j1, R,A[j1[51);

for (i = j+1; i < N; i++) {
SYRK (RW,A[il[i], R,A[i1[j1);
for (k = j+1; k < i; kt++)

GEMM (RW,A[i][k],
R,A[i1[31, R,ALkI[31);




Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) );
for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );
for (i = j+1; i < N; i++) {
task_insert( SYRK (RW,A[i][i], R,A[i]1[3j1) );
for (k = j+1; k < i; kt++)
task_insert( GEMM (RW,A[i] [k],
R,A[i] [3], R,A[X]I[31) D

}
¥
wait_for_all();




Sequential Task Flow Graph Building

Example: Cholesky Decomposition -

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) );
for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );
for (i = j+1; i < N; i++) {
task_insert( SYRK (RW,A[i][i], R,A[i]1[j1) );
for (k = j+1; k < i; kt++)
task_insert( GEMM (RW,A[i][k],
R,A[i1[3], R,A[K]I[51) )

}
¥
wait_for_all();

. Tasks are submitted asynchronously




Sequential Task Flow Graph Building

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) );
for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );
for (i = j+1; i < N; i++) {
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R,A[i1[3], R,A[K]I[51) )

Example: Cholesky Decomposition | |

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...




Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) ); H

for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );
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}
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wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
]

- ... and build a graph of tasks D SYRK
]
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Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {

task_insert( POTRF (RW,A[jI1[j1) );
for (i = j+1; i < N; i++)
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wait_for_all();
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Sequential Task Flow Graph Building

Example: Cholesky Decomposition
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Sequential Task Flow Graph Building
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task_insert( POTRF (RW,A[jI1[j1) );
for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );

for (i = j+1; i < N; i++) {
task_insert( SYRK (RW,A[i][i], R,A[i]1[j1) );
for (k = j+1; k < i; kt++)
task_insert( GEMM (RW,A[i] [k],
R,A[i] [3], R,A[X]I[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...

]
]

- ... and build a graph of tasks D SYRK
]

l&'z



Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) );
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for (j = 0; j < N; j++) {
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Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) );
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Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
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Sequential Task Flow Graph Building

Example: Cholesky Decomposition
for (j = 0; j < N; j++) {

task_insert ( POTRF (RW,A[j]1[j1) );
for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );
for (i = j+1; i < Nj; i++) {
task_insert( SYRK (RW,A[i][i], R,A[i]1[j1) );
for (k = j+1; k < i; kt++)
task_insert( GEMM (RW,A[i][k],
R,A[i][3], R,A[KI[31) D

}
¥
wait_for_all();

. Tasks are submitted asynchronously

. StarPU infers data dependences...
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Sequential Task Flow Graph Building

Example: Cholesky Decomposition

for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[jI1[j1) );
for (i = j+1; i < N; i++)
task_insert( TRSM (RW,A[i][j], R,A[j1[31) );
for (i = j+1; i < N; i++) {
task_insert( SYRK (RW,A[i][i], R,A[i]1[j1) );
for (k = j+1; k < i; kt++)
task_insert( GEMM (RW,A[i][k],
R,A[i][3], R,A[KI[31) D

}
T
wait_for_all();

. Tasks are submitted asynchronously
. StarPU infers data dependences...

« ... and build a graph of tasks

= The graph of tasks is executed



StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
= Allocating computing resources
= Enforcing dependency constraints
= Handling data transfers
Adaptiveness
= A single DAG enables multiple schedulings
= A single DAG can be mapped on multiple platforms

L7 g

2. The StarPU Runtime



Example: SCHNAPS, Implicit kinetic schemes

SCHNAPS Solver (Inria TONUS)
= Example of a task graph submitted to StarPU




Heterogeneous Showcase with Chameleon + StarPU

UTK, Inria HIEPACS, Inria RUNTIME
= QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels
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“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on
a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011."




Heterogeneous Showcase with Chameleon + StarPU

UTK, Inria HIEPACS, Inria RUNTIME
= QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels
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a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011."




Heterogeneous Showcase with Chameleon + StarPU

QR kernel properties

Kernel SGEQRT

CPU: 9 GFlop/s GPU: 30 GFlop/s  Speed-up: 3
Kernel STSQRT

CPU: 12 GFlop/s GPU: 37 GFlop/s Speed-up: 3
Kernel SOMQRT

CPU: 85 GFlop/s GPU: 227 GFlop/s Speed-up: 27
Kernel SSSMQ

CPU: 10 GFlop/s  GPU: 285 GFlop/s Speed-up: 28

Consequences
« Task distribution

— SGEQRT: 20% Tasks on GPU
— SSSMQ: 92% tasks on GPU
« Taking advantage of heterogeneity!

— Only do what you are good for
— Don’t do what you are not good for

l &” 2. The StarPU R



Programming with StarPU

-
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Terminology

= Codelet
. Task
= Data handle

3. Programming with StarPU



Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks
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Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
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Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl

O

3. Programming with StarPU



Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
Task 1: will perform a ’scal’ kernel
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Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
Task 1: will perform a ’scal’ kernel
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Definition: A Codelet

A Codelet. . .
= ... relates an abstract computation kernel to its implementation(s)
= ... can be instantiated into one or more tasks
= ... defines characteristics common to a set of tasks

Codelet
scal_cl
Task 1: will perform a ’scal’ kernel

Task 2: will perform a ’scal’ kernel

3. Programming with StarPU




Definition: A Task

A Task...
= ... is an instantiation of a Codelet
= ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output
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Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output
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Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl
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Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

. Task 1 waits for input data

3. Programming with StarPU



Definition: A Task

A Task. ..

is an instantiation of a Codelet

. atomically executes a kernel from its beginning to its end
. receives some input

. produces some output

Codelet
scal_cl

. Task 1 receives its input data

3. Programming with StarPU



Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

‘ Task 1 is running

3. Programming with StarPU



Definition: A Task

A Task...
= ... is an instantiation of a Codelet
- ... atomically executes a kernel from its beginning to its end
= ... receives some input
= ... produces some output

Codelet
scal_cl

‘ Task 1 outputs data result

{

B
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Definition: A Data Handle

A Data Handle. ..
= ... designates a piece of data managed by StarPU
- ... is typed (vector, matrix, etc.)

= ... can be passed as input/output for a Task

3. Programming with StarPU



Elementary API

= Declaring a codelet

= Declaring and Managing Data
= Writing a Kernel Function

« Submitting a task

= Waiting for submitted tasks

3. Programming with StarPU



Declaring a Codelet

Define a struct starpu_codelet

-

struct starpu_codelet scal_cl = {

}s

w
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Declaring a Codelet

Define a struct starpu_codelet
= Plug the kernel function
— Here: scal_cpu_func

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func, NULL },

}i
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Declaring a Codelet

Define a struct starpu_codelet
= Plug the kernel function
— Here: scal_cpu_func
« Declare the number of data pieces used by the kernel
— Here: A single vector

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func, NULL },
.nbuffers = 1,

[ N O
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Declaring a Codelet

Define a struct starpu_codelet
= Plug the kernel function
— Here: scal_cpu_func
« Declare the number of data pieces used by the kernel
— Here: A single vector
= Declare how the kernel accesses the piece of data
— Here: The vector is scaled in-place, thus R/W

struct starpu_codelet scal_cl = {
.cpu_func = { scal_cpu_func, NULL },
.nbuffers = 1,
.modes = { STARPU_RW },

[ N O

}

3. Programming with StarPU



Declaring and Managing Data

Put data under StarPU control
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Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data

-

float vector [NX];
2/« ... fill data ... %/
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Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data
- Register the piece of data and get a handle
— The vector is now under StarPU control

float vector [NX];
/¥ ... fill data ... %/

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]));

L N N
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Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data
- Register the piece of data and get a handle
— The vector is now under StarPU control

= Use data through the handle

float vector [NX];
/¥ ... fill data ... %/

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle ,

© N O oA W N e

/% ... use the vector through the handle

0,

(uintptr_t)vector, NX, sizeof(vector[0]));

*/

3. Programming with StarPU




Declaring and Managing Data

Put data under StarPU control

- Initialize a piece of data

- Register the piece of data and get a handle
— The vector is now under StarPU control

= Use data through the handle

= Unregister the piece of data

— The handle is destroyed
— The vector is now back under user control

float vector [NX];
/¥ ... fill data ... %/

starpu_data_handle_t vector_handle;
starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]));

/% ... use the vector through the handle ... x/

starpu_data_unregister(vector_handle);

3. Programming with StarPU



Writing a Kernel Function

= Every kernel function has the same C prototype

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

}

w
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Writing a Kernel Function

= Every kernel function has the same C prototype

= Retrieve the vector's handle

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {
struct starpu_vector_interface xvector_handle = buffers
[o];

N}
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Writing a Kernel Function

= Every kernel function has the same C prototype
= Retrieve the vector’s handle

= Get vector's number of elements and base pointer

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

2 struct starpu_vector_interface xvector_handle = buffers
[o];

3

4 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

5 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

6

7

s}
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Writing a Kernel Function

= Every kernel function has the same C prototype
= Retrieve the vector’s handle
= Get vector's number of elements and base pointer

= Get the scaling factor as inline argument

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

2 struct starpu_vector_interface xvector_handle = buffers
[o];

3

4 unsigned n = STARPU_VECTOR_GET _NX(vector_handle);

5 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

6

7 float *xptr_factor = cl_arg;

8

9
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Writing a Kernel Function

= Every kernel function has the same C prototype

= Retrieve the vector’s handle

= Get vector's number of elements and base pointer
= Get the scaling factor as inline argument

« Compute the vector scaling

1 void scal_cpu_func(void xbuffers[], void xcl_arg) {

2 struct starpu_vector_interface xvector_handle = buffers
[o];

3

4 unsigned n = STARPU_VECTOR_GET _NX(vector_handle);

5 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

6

7 float *xptr_factor = cl_arg;

8

9 unsigned i;

10 for (i = 0; i <n; i+4)

1 vector[i] *= xptr_factor;

3. Programming with StarPU




Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments

= The codelet structure

1 starpu_task_insert(&scal_cl

) )
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data

1 starpu_task_insert(&scal_cl,
2 STARPU_RW, vector_handle,

3 )v
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data

= The small-size inline data

sizeof (factor),

1 starpu_task_insert(&scal_cl,

2 STARPU_RW, vector_handle,
3 STARPU_VALUE , &factor ,

4 )
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data
= The small-size inline data

= 0 to mark the end of arguments

sizeof (factor),

1 starpu_task_insert(&scal_cl,

2 STARPU_RW, vector_handle,
3 STARPU_VALUE , &factor ,

4 0);
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments

= The codelet structure

= The StarPU-managed data

= The small-size inline data

= 0 to mark the end of arguments
Notes

« The task is submitted non-blockingly
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments

= The codelet structure

= The StarPU-managed data

= The small-size inline data

= 0 to mark the end of arguments
Notes

= The task is submitted non-blockingly

« Dependencies are enforced with previously submitted tasks’ data. . .
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data
= The small-size inline data
= 0 to mark the end of arguments
Notes
= The task is submitted non-blockingly
= Dependencies are enforced with previously submitted tasks’ data. . .

« ... following the natural order of the program
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Submitting a task

The starpu__task_insert call
- Inserts a task in the StarPU DAG

Arguments
= The codelet structure
= The StarPU-managed data
= The small-size inline data
= 0 to mark the end of arguments
Notes
= The task is submitted non-blockingly
= Dependencies are enforced with previously submitted tasks’ data. . .
« ... following the natural order of the program

= This is the Sequential Task Flow Paradigm

3. Programming with StarPU



Wiaiting for Submitted Task Completion

= Tasks are submitted non-blockingly
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Wiaiting for Submitted Task Completion

= Tasks are submitted non-blockingly

-

/+* non—blocking task submits x/
starpu_task_insert (...);

N
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Wiaiting for Submitted Task Completion

= Tasks are submitted non-blockingly

= Wait for all submitted tasks to complete their work

1 /x non—blocking task submits x/
2| starpu_task_insert (...);
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Wiaiting for Submitted Task Completion

o oA W N e

= Tasks are submitted non-blockingly

= Wait for all submitted tasks to complete their work

/+* non—blocking task submits x/
starpu_task_insert (...);

/* wait for all task submitted so far x/
starpu_task_wait_for_all();

3. Programming with StarPU




Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
2 float vector [NX];

[
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Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

w N e
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Basic Example: Scaling a Vector (main prog.)
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float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))
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Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

© N O oA W N e

10 starpu_task_insert(

11 &scal_cl,

12 STARPU_RW, vector_handle,

13 STARPU_VALUE , &factor, sizeof(factor),
14 0);
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Basic Example: Scaling a Vector (main prog.)

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

© N O oA W N e

10 starpu_task_insert(

11 &scal_cl,

12 STARPU_RW, vector_handle,

13 STARPU_VALUE , &factor, sizeof(factor),
14 0);

15
16| starpu_task_wait_for_all();
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Basic Example: Scaling a Vector (main prog.)

© N O oA W N e

10
11
12
13
14
15
16
17
18
19

float factor = 3.14;
float vector [NX];
starpu_data_handle_t vector_handle;

/% ... fill vector ... x/

starpu_vector_data_register(&vector_handle, 0,
(uintptr_t)vector, NX, sizeof(vector[0]))

starpu_task_insert(
&scal_cl,
STARPU_RW, vector_handle,
STARPU_VALUE , &factor, sizeof(factor),
0);

starpu_task_wait_for_all();
starpu_data_unregister(vector_handle);

/« ... display vector ... x/

3. Programming with StarPU




Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
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Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
= Multiple kernel implementations for a CPU
— SSE, AVX, ... optimized kernels

1 struct starpu_codelet scal_cl = {

2 .cpu_func = { scal_cpu_func,

3 scal_sse_cpu_func, scal_avx_cpu_func, NULL },
4 .nbuffers = 1,

5 .modes = { STARPU_RW },

6 };
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Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
= Multiple kernel implementations for a CPU
— SSE, AVX, ... optimized kernels
= Kernels implementations for accelerator devices
— OpenCL, NVidia Cuda kernels

1 struct starpu_codelet scal_cl = {

2 .cpu_func = { scal_cpu_func,

3 scal_sse_cpu_func, scal_avx_cpu_func, NULL },
4 .opencl_func = { scal_cpu_opencl, NULL },

5 .cuda_func = { scal_cpu_cuda, NULL },

6 .nbuffers = 1,

7 .modes = { STARPU_RW },

8 };
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Writing a Kernel Function for CUDA
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Writing a Kernel Function for CUDA

1

2

3

4

5

6

7

s extern "C" void scal_cuda_func(void sbuffers[], void xcl_arg)
{

9 struct starpu_vector_interface xvector_handle = buffers

[0];

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float xvector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14

15

16

17

18

0 }
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Writing a Kernel Function for CUDA

1

2

3

4

5

6

7

s extern "C" void scal_cuda_func(void sbuffers[], void xcl_arg)
{

9 struct starpu_vector_interface xvector_handle = buffers

[0];

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float *xvector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14 unsigned threads_per_block = 64;

15 unsigned nblocks = (n+threads_per_block —1)/

threads_per_block;
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Writing a Kernel Function for CUDA

1
2
3
4
5
6
7
8

10
11
12
13
14
15

16
17
18

extern "C" void scal_cuda_func(void xbuffers[], void xcl_arg)
{
struct starpu_vector_interface xvector_handle = buffers
[0];
unsigned n = STARPU_VECTOR_GET_NX(vector_handle);
float *xvector = STARPU_VECTOR_GET_PTR(vector_handle);
float *xptr_factor = cl_arg;

unsigned threads_per_block = 64;
unsigned nblocks = (n+threads_per_block —1)/

threads_per_block;

vector_mult_cuda<<<nblocks ,threads_per_block 0,

starpu_cuda_get_local_stream ()>>>(n, vector ,*
ptr_factor);
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Writing a Kernel Function for CUDA

1 static __global__ void vector_mult_cuda(unsigned n,
2 float xvector, float factor
)

3 unsigned i = blockldx .x*xblockDim.x 4+ threadldx.x;

4

5

s }

7

s extern "C" void scal_cuda_func(void xbuffers[], void *cl_arg)

9 struct starpu_vector_interface *xvector_handle = buffers
[0l;

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14 unsigned threads_per_block = 64;

15 unsigned nblocks = (n+threads_per_block —1)/
threads_per_block;

16

17 vector_mult_cuda<<<nblocks ,threads_per_block 0,

18 starpu_cuda_get_local_stream ()>>>(n, vector ,x

ptr_factor);

AD,

LA —




Writing a Kernel Function for CUDA

1 static __global__ void vector_mult_cuda(unsigned n,
2 float xvector, float factor
)

3 unsigned i = blockldx .x*xblockDim.x 4+ threadldx.x;

4 if (i <n)

5 vector[i] *= factor;

s}

7

s extern "C" void scal_cuda_func(void xbuffers[], void *cl_arg)

9 struct starpu_vector_interface *xvector_handle = buffers
[ol;

10 unsigned n = STARPU_VECTOR_GET_NX(vector_handle);

1 float *vector = STARPU_VECTOR_GET_PTR(vector_handle);

12 float *xptr_factor = cl_arg;

13

14 unsigned threads_per_block = 64;

15 unsigned nblocks = (n+threads_per_block —1)/
threads_per_block;

16

17 vector_mult_cuda<<<nblocks ,threads_per_block 0,

18 starpu_cuda_get_local_stream ()>>>(n, vector ,x

ptr_factor);

AD,

LA —
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StarPU Internal Structure

HPC Applications

library

High-level data management

Execution model

Scheduling engine

Specific drivers

Mastering CPUs, GPUs, SPUs ... *PU > StarPU

4. StarPU Internals




StarPU Internal Functioning

Application
Memory Scheduling engine
Management
(DSM)
. CPU driver
“ GPU driver #k

RAM

Submit task « A+=B »
IW'”




StarPU Internal Functioning

Application

|_A = A+B
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Management
(DSM)
. CPU driver
“ GPU driver #k

RAM
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StarPU Internal Functioning

Application i

Memory Schedullhg engine

Management
(DSM) /
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GPU driver

CPU driver
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Schedule task
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StarPU Internal Functioning

Application |
Memory Schedulihg engine
Management
(DSM) /
A = A+B

CPU driver
#k

Fetch data
IWf
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StarPU Internal Functioning

Application |
Memory Schedulihg engine
Management
(DSM) /

CPU driver

GPU driver #K




StarPU Internal Functioning

Application }

Memory Schedulihg engine /

Management
(DSM) /

CPU driver
#k

Notify termination
l&w?'f
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StarPU Scheduling Policies

= No one size fits all policy
= Selectable scheduling policy
— Predefined set of popular policies: eager, work-stealing, etc.
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StarPU Scheduling Policies

« No one size fits all policy
=« Selectable scheduling policy
— Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?
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StarPU Scheduling Policies

« No one size fits all policy
=« Selectable scheduling policy
— Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
= Providing more input to the scheduler. ..
= ... can lead to better scheduling decisions

What kind of information?
= Relative importance of tasks
— Priorities
= Cost of tasks
— Codelet models
= Cost of transferring data
— Bus calibration

5. Scheduling Policies




Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable
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Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

. Example 1: selecting the prio scheduler

1 $ export STARPU_SCHED=prio
2 $ my_program
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Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler

1 $ export STARPU_SCHED=prio
2 $ my_program

export STARPU_SCHED=dm
my__program

-
A A
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Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler

Example 3: resetting to default scheduler eager

1 $ export STARPU_SCHED=prio
2 $ my_program

export STARPU_SCHED=dm
my__program

-
A A

1 $ unset STARPU_SCHED
2'$ my_program
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Selecting a Scheduling Policy

= Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler

Example 3: resetting to default scheduler eager

= No need to recompile the application

1 $ export STARPU_SCHED=prio
2 $ my_program

export STARPU_SCHED=dm
my__program

-
A A

1 $ unset STARPU_SCHED
2'$ my_program

5. Scheduling Policies




Task Mapping using a Performance Model

= Example:
The Deque Model Scheduler

? Time
N[ s s |
e [ |
Plee——— |
vt [
GPU2 D
Il B .
I B

e e
[©] [¢] [

CPU Cores GPU1 GPU 2
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Task Mapping using a Performance Model

= Using codelet performance models

— Kernel calibration on each available computing device

— Raw history model of kernels’ past execution times

— Refined models using regression on kernels’ execution times history
= Model parameter(s)

— Data size
— User-defined parameters

5. Scheduling Policies
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StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

-
-

CPU GPU1

MEM

u)
-
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StarPU Heterogeneous Execution Model / Data Management

CPU GPUO
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« Handles dependencies
= Handles scheduling (policy)
= Handles data consistency (MSI
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« Handles dependencies
= Handles scheduling (policy)
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StarPU Heterogeneous Execution Model / Data Management

CPU GPUO

0
B

1 GPUO

CPU GPU1

MEM

LL]

« Handles dependencies
= Handles scheduling (policy)
= Handles data consistency (MSI
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StarPU Heterogeneous Execution Model / Data Management
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I

[
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CPU GPU1

GPUO

« Handles dependencies
= Handles scheduling (policy)

= Handles data consistency (MSI
protocol)

6. Data Management



StarPU Heterogeneous Execution Model / Data Management

o mE
i
T r— _L

n

CPU GPU1

GPUO

« Handles dependencies
= Handles scheduling (policy)

= Handles data consistency (MSI
protocol)

6. Data Management



Distributed Shared Memory Consistency

MSI Protocol

A = A+B
« M: Modified
= S: Shared o &
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Distributed Shared Memory Consistency

MSI Protocol A = A+B
« M: Modified
« S: Shared
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Distributed Shared Memory Consistency

MSI Protocol A = A+B

= M: Modified
= S: Shared
« It Invalid @ @ GPU

CPU CPU
/A
1 GPU |§|
Q N
Data A Data B

RW (3)

(im] [s[i]s] «—
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Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
« CPU < GPU transfers

= Data transfer cost vs kernel offload benefit
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Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
« CPU < GPU transfers

= Data transfer cost vs kernel offload benefit

Transfer cost modelling
= Bus calibration

— Can differ even for identical devices
— Platform’s topology
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Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
« CPU < GPU transfers
= Data transfer cost vs kernel offload benefit

Transfer cost modelling
= Bus calibration

— Can differ even for identical devices
— Platform’s topology

Data-transfer aware scheduling
« Deque Model Data Aware (dmda) scheduling policy variants

« Tunable data transfer cost bias

— locality
— vs load balancing

6. Data Management




Data Prefetching

Task states
= Submitted
— Task inserted by the application
« Ready
— Task’s dependencies resolved
« Scheduled
— Task queued on a computing unit
= Executing
— Task running on a computing unit
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Data Prefetching

Task states
= Submitted
— Task inserted by the application
« Ready
— Task’s dependencies resolved
= Scheduled

— Task queued on a computing unit

= Executing
— Task running on a computing unit

Anticipate on the Scheduled — Executing transition
« Prefetch triggered ASAP after Scheduled state
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Data Prefetching

Task states
= Submitted
— Task inserted by the application
« Ready

— Task’s dependencies resolved

« Scheduled

— Task queued on a computing unit

= Executing
— Task running on a computing unit

Anticipate on the Scheduled — Executing transition
« Prefetch triggered ASAP after Scheduled state
« Prefetch may also be triggered by the application

6. Data Management



Data Interfaces

Multiple data types supported

[ B N R

= Vector
= Matrix
= BCSR sparse matrix

int vector [NX];
starpu_data_handle_t handle;

starpu_vector_data_register(&handle,

NX,

sizeo

0
f

(

(uintptr_t)vector,
vector [0]));
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Data Interfaces

Multiple data types supported
= Vector
= Matrix
= BCSR sparse matrix

float matrix [NX«NY];
starpu_data_handle_t handle;

starpu_matrix_data_register(&handle, 0, (uintptr_t)matrix,
NX, NX, NY, sizeof(matrix[0]));

[ B N R

6. Data Management



Data Interfaces

Multiple data types supported

o s W N e

= Vector
= Matrix
= BCSR sparse matrix

starpu_data_handle_t handle;

starpu_bcsr_data_register(&handle, 0, NNZ, NROW,
(uintptr_t)bcsr_matrix_data,

bcsr_matrix_indices ,
first_entry ,

bcsr_matrix_rowptr,

BLOCK_NROW, BLOCK_NCOL, sizeof(double));

6. Data Management




Data Interfaces

Multiple data types supported
= Vector
= Matrix
= BCSR sparse matrix
= Extensible data type set

— You can write your own, specifically tailored data type
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Data Interfaces

Multiple data types supported
= Vector
= Matrix
= BCSR sparse matrix

= Extensible data type set
— You can write your own, specifically tailored data type

« Only the byte size and the shape of data matter, not the actual element
type (integer, float, double precision float, ...)

6. Data Management




Partitioning

Splitting a piece of managed data into several handles
= Granularity adjustment

= Notion of filter
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Partitioning

Splitting a piece of managed data into several handles

= Granularity adjustment

= Notion of filter

Partition

1 int vector [NX];

2 starpu_data_handle_t handle;

3 starpu_vector_data_register(&handle, 0, (uintptr_t)vector,
4 NX, sizeof(vector[0]));

5

6/ /* Partition the vector in NB_PARTS sub—vectors %/

7 struct starpu_data_filter filter = {

8 .filter_func = starpu_vector_filter_block ,

9 .nchildren = NB_PARTS

0 };

1 starpu_data_partition(handle, &filter);

12

13| /* Data can only be accessed through sub—handles now x/

6. Data Management




Partitioning

Splitting a piece of managed data into several handles
= Granularity adjustment
= Notion of filter

Partition — Use

1 for (i=0; i<starpu_data_get_nb_children(handle); i++) {
2 /* Get subdata number i x/

3 starpu_data_handle_t sub_handle =

4 starpu_data_get_sub_data(handle, 1, i);
5

6 starpu_task_insert(

7 &scal_cl,

8 STARPU_RW, sub_handle,

9 STARPU_VALUE, &factor, sizeof(factor),
10 0);

u }

6. Data Management




Partitioning

Splitting a piece of managed data into several handles

= Granularity adjustment

= Notion of filter

Partition — Use — Unpartition

N o oA W N e

/+* Wait for submitted tasks to complete x/
starpu_task_wait_for_all();

/% Unpartition data */
starpu_data_unpartition(handle, 0);

/* Data can now be accessed through ’'handle’ only x/

6. Data Management




Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps
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Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

© ©® N oA W N e

=oe e
N = O

=« Partition planning

int vector[NX];

starpu_data_handle_t handle;

starpu_vector_data_register(&handle, 0, (uintptr_t)vector,
NX, sizeof(vector[0]));

/+* Partition the vector in NB_PARTS sub—vectors x/
struct starpu_data_filter filter = {
.filter_func = starpu_vector_filter_block ,
.nchildren = NB_PARTS
+
starpu_data_handle_t children [NB_PARTS];
starpu_data_partition_plan(handle, &filter , children);

/* Data can only be accessed through sub—handles now x/

6. Data Management



Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

© ©® N oA W N e

=
= o

=« Partition planning

= Asynchronous partition inforcement

starpu_task_insert(&scal_cl,

STARPU_RW, handle,

STARPU_VALUE, &factorl, sizeof(factorl), 0);
starpu_data_partition_submit(handle, NB_PARTS, children);
for (i=0; i<NB_PARTS; i++) {

starpu_task_insert(&scal_cl,

STARPU_RW, children[i],
STARPU_VALUE, &factor2, sizeof(factor2),
0);

starpu_data_unpartition_submit(handle, NB_PARTS, children,
node) ;

starpu_task_insert(&scal_cl,
STARPU_RW, handle,
STARPU_VALUE, &factor3, sizeof(factor3), 0);

6. Data Management



Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer

= Define reduction operator
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Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer

= Define reduction operator

Define zero

1 void bzero_cpu(void xdescr[], void xcl_arg) {

2 double *v_zero = (double *)STARPU_VARIABLE_GET_PTR(descr
[on:

3 xv_zero = 0.0;

+ }

5

6 struct starpu_codelet bzero_cl = {

7 .cpu_funcs = { bzero_cpu, NULL },

8 .nbuffers =1

9 };
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Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer
= Define reduction operator

Define zero — Define op

1 void accumulate_cpu(void xdescr[], void xcl_arg) {

2 double *v_dst = (double #)STARPU_VARIABLE_GET_PTR(descr
[01):

3 double *v_src = (double x)STARPU_VARIABLE_GET_PTR(descr
(1

4 *v_dst = xv_dst + xv_src;

s}

6

7 struct starpu_codelet accumulate_cl = {

8 .cpu_funcs = { accumulate_cpu, NULL },

9 .nbuffers =1

0 };
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Reduction

Merge contributions from a set of tasks into a single buffer
= Define neutral element initializer
= Define reduction operator

Define zero — Define op — Reduce task contributions

1 starpu_variable_data_register(&accum_handle, -1,

2 NULL, sizeof(type));

3 starpu_data_set_reduction_methods (accum_handle,

4 &accumulate_cl, &bzero_cl);
5

6 for (b = 0; b < nblocks; b++)

7 starpu_task_insert(&dot_kernel_cl,

8 STARPU_REDUX, accum_handle,

9 STARPU_R, starpu_data_get_sub_data(vl, 1, b),
10 STARPU_R, starpu_data_get_sub_data(v2, 1, b),
11 0);

6. Data Management




Commutative Write Accesses

= Write accesses enforce sequential consistency by default

— To strong for some kind of workloads
— N-body, unstructured meshes
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Commutative Write Accesses

= Write accesses enforce sequential consistency by default

— To strong for some kind of workloads
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Commutative Write Accesses

= Write accesses enforce sequential consistency by default

— To strong for some kind of workloads
— N-body, unstructured meshes

. Commute: allows a set of tasks to modify a buffer in any order

1 starpu_task_insert(&cll ,

2 STARPU_R, handleO,

3 STARPU_RW, handle,

4 0);

s/ starpu_task_insert(&cl2,

6 STARPU_R, handlel ,

7 STARPU_RW|STARPU_COMMUTE , handle,
8

9

0);

starpu_task_insert(&cl2,
10 STARPU_R, handle2,
11 STARPU_RW | STARPU_COMMUTE , handle,
12 0);
13 starpu_task_insert(&cl3,
14 STARPU_R, handle3,
15 STARPU_RW, handle,
16 0);

6. Data Management




Analysis and Monitoring
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Feedback mechanisms

Online Tools
= Statistics
= Visual debugging

Offline Tools

= Trace-based analysis
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Offline Trace-Based Feedback

= FxT trace collection

= Trace analysis and display

— VITE Gantt
— Graphviz DAG
— R plots

7. Analysis and Monitoring



Offline Feedback — Trace Analysis

Automatically generated
= Dependency graph (DAG)

= Activity diagramm (GANTT)
— Visualize with ViTE

™| VITE :: dmda-lu-16k-fx5800.trace

No arrows No events

84 77

—ox|
File View Preferences Help

[/ RE[QQ AW~ a2

IMEMNOD

MEMNDD.

g
Scale containers/states: ~___| Change position: [ > Zoom: (100% ;l

-
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Offline Feedback — Kernel Model

Display the codelet performance models recorded by StarPU
= Command-line tool starpu_perfmodel_display
= History-based models

= Regression-based models
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Offline Feedback — Kernel Model

Display the codelet performance models recorded by StarPU
= Command-line tool starpu_perfmodel_display
= History-based models

= Regression-based models

$ starpu_perfmodel_display —s starpu_slu_lu_model_11

# hash size mean (us) stddev (us)

1

2

3 performance model for cpuO_parallell_impl0

4

5 aabd4ef7 4194304 3.055501e+405 5.804822e+04




Offline Feedback — Kernel Model Characteristics

100
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Time (ms)

041

0.01

Model for codelet starpu_slu_lu_model_11.averell1
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Offline Feedback — Kernel Model Regression Fitness

Model for codelet non_linear_memset_regression_based

10 r T T T
Profiling cpu0_ncore0_impl0 +
Non-Linear Regression cpu0_ncore0_impl0
Average cpu0_ncore0_impl0
1 4

— 01 J
(%)
E
@
E
= 0.01 1
0.001 B
0.0001 . . . .
1000 10000 100000 le+06 1e+07 le+08

Total data size
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Offline Feedback — Synthetic Kernels’ Behaviour
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Distributed Support

Sequential Task Flow Paradigm on Clusters
Each node unrolls the sequential task flow

Data«++Node Mapping
= Provided by the application
= Can be altered dynamically

8. Distributed Computing

node0 node1

node2




Distributed Support

Sequential Task Flow Paradigm on Clusters
Each node unrolls the sequential task flow

Inter-node dependence management
= Inferred from the task graph edges

= Automatic Isend and Irecv calls
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Distributed Support

Sequential Task Flow Paradigm on Clusters
Each node unrolls the sequential task flow

Task<>Node Mapping
=« Inferred from data location:
— Tasks move to data they modify

= No global scheduling

= No synchronizations

Optimization
= Local DAG pruning

8. Distributed Computing

nodeo‘node1

node2

node3




Distributed Scalability Study Results

Chameleon linear algebra library (Inria Team HiePACS)
= Heterogeneous cluster: 1152 CPU cores+288 GPUs

100 —

TFlop/s
>

DGEMM peak

STF / Chameleon —=a—

PTG /DPLASMA —e—

CPU-only DGEMM peak
CPU-only STF / Chameleon -
CPU-only PTG / DPLASMA -
GPU-only MPI/ Scal APACK .-

0 100000 200000 300000 400000

Matrix order (N)
IEEE TPDS Paper:
DOI: 10.1109/TPDS.2017.2766064 — https://hal.inria.fr/hal-01618526

1
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Composing Multiple Codes

Rationale
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Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

Scheduling Contexts

= Map DAGs on subsets of computing units
Context 2

=« Isolate competing kernels or library calls
— OpenMP kernel, Intel MKL, etc.
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Composing Multiple Codes

Rationale
= Sharing computing resources. . .
= ... among multiple DAGs

= ... simultaneously

Scheduling Contexts

= Map DAGs on subsets of computing u