The StarPU Runtime System

Part. 2 – Mastering StarPU

Team Storm – Olivier Aumage
Inria – LaBRI, in cooperation with La Maison de la Simulation
Contents

1. StarPU Internals
2. Scheduling
3. Data management
4. Debugging / Monitoring
5. Distributed computing
6. High-level programming
7. Advanced scheduling
8. Advanced Data Management
9. Advanced Debugging / Monitoring
1

StarPU Internals
StarPU Internal Structure

- High-level data management library
- Execution model
- Scheduling engine
- Specific drivers
- CPUs
- GPUs
- SPUs
- ...
StarPU Internal Functioning

Submit task « A+=B »
StarPU Internal Functioning

A = A + B

Submit task « A+=B »
StarPU Internal Functioning

Scheduling engine

- **Application**
- **Memory Management (DSM)**
- **RAM**
- **GPU driver**
- **CPU driver #k**

Schedule task

A = A + B

...
StarPU Internal Functioning

Scheduling engine

Application

Memory Management (DSM)

A = A + B

GPU driver

RAM

CPU driver #k

Fetch data
StarPU Internal Functioning

Application

Scheduling engine

Memory Management (DSM)

A = A + B

GPU driver

Fetch data

A

B

RAM

A

B

GPU

CPU driver #k

CPU#k

A

B
StarPU Internal Functioning

- **Application**
- **Scheduling engine**
- **Memory Management (DSM)**
- **GPU driver**
- **CPU driver #k**

Flow Diagram:
- **Fetch data**
- **A = A + B**

Components:
- **RAM**
- **GPU**
- **CPU #k**
StarPU Internal Functioning

Scheduling engine

Application

Memory Management (DSM)

RAM

GPU driver

CPU driver #k

Offload computation

A = A+B
StarPU Internal Functioning

- Application
- Scheduling engine
- Memory Management (DSM)
- GPU driver
- CPU driver #k
- Notify termination

RAM

A

B

CPU#k

GPU

...
2

Scheduling
StarPU Scheduling Policies

- No *one size fits all* policy
StarPU Scheduling Policies

- No *one size fits all* policy
- Selectable scheduling policy
 - Predefined set of popular policies
The **Eager** Scheduler

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy
The Eager Scheduler

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy

![Diagram of Eager Scheduler]

- CPU Cores
- GPU 1
- GPU 2
The **Eager Scheduler**

- First come, first served policy
The Eager Scheduler

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy

![Diagram showing CPU Cores and GPUs](image-url)
The **Eager Scheduler**

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy
The **Eager Scheduler**

- First come, first served policy

![Diagram showing CPU and GPU cores with task scheduling]

CPU Cores	**GPU 1**	**GPU 2**
The **Eager Scheduler**

- First come, first served policy
The **Work Stealing** Scheduler

- Load balancing policy
The **Work Stealing** Scheduler

- Load balancing policy

![Diagram showing CPU Cores and GPUs](image-url)
The **Work Stealing** Scheduler

- Load balancing policy
Going Beyond

Scheduling is a decision process
Going Beyond

Scheduling is a decision process

- Providing more input to the scheduler...
Going Beyond

Scheduling is a decision process
- Providing more input to the scheduler…
- … can lead to better scheduling decisions
Going Beyond

Scheduling is a decision process

- Providing more input to the scheduler...
- ... can lead to better scheduling decisions

What kind of information?
Going Beyond

Scheduling is a decision process
- Providing more input to the scheduler…
- … can lead to better scheduling decisions

What kind of information?
- Relative importance of tasks
 - Priorities
Going Beyond

Scheduling is a decision process

- Providing more input to the scheduler…
- … can lead to better scheduling decisions

What kind of information?

- Relative importance of tasks
 - Priorities
- Cost of tasks
 - Codelet models
Going Beyond

Scheduling is a decision process

- Providing more input to the scheduler...
- ... can lead to better scheduling decisions

What kind of information?

- Relative importance of tasks
 - Priorities
- Cost of tasks
 - Codelet models
- Cost of transferring data
 - Bus calibration
The **Prio** Scheduler

- Describe the relative importance of tasks
The **Prio** Scheduler

- Describe the relative importance of tasks
- Assign priorities to tasks
 - Values: $-5 .. 0 .. +5$
The **Prio** Scheduler

- Describe the relative importance of tasks
- Assign priorities to tasks
 - Values: $-5 \ldots 0 \ldots +5$
- **Tell which task matter**
 - Tasks that unlock key data pieces
 - Tasks that generate a lot of parallelism
The **Prio** Scheduler

- Describe the relative importance of tasks

![Diagram showing the Prio Scheduler with CPU Cores and GPUs with different priorities.](image-url)
The **Prio** Scheduler

- Describe the relative importance of tasks

![Diagram showing the Prio Scheduler with CPU Cores and GPUs with prioritization]

Submit

Prio 3

Prio 2

Prio 1

CPU Cores

GPU 1

GPU 2
The **Prio** Scheduler

- Describe the relative importance of tasks

![Diagram showing CPU Cores and GPUs with priorities](image)
The **Prio** Scheduler

- Describe the relative importance of tasks
The **Prio Scheduler**

- Describe the relative importance of tasks
The **Prio Scheduler**

- Describe the relative importance of tasks
The **Prio** Scheduler

- Describe the relative importance of tasks
Describe the relative importance of tasks
The **Prio** Scheduler

- Describe the relative importance of tasks
The **Prio** Scheduler

- Describe the relative importance of tasks
The **Prio** Scheduler

- Describe the relative importance of tasks
The **Prio** Scheduler

- Describe the relative importance of tasks
The **Deque Model (dm)** Scheduler

- Inspired by HEFT popular scheduling algorithm
 - Heterogeneous Earliest Finish Time
- Try to get the best from accelerators **and** CPUs
The **Deque Model (dm)** Scheduler

- Inspired by HEFT popular scheduling algorithm
 - Heterogeneous Earliest Finish Time
- Try to get the best from accelerators **and** CPUs
- Using codelet performance models
 - Kernel calibration on each available computing device
 - **Raw** history model of kernels’ past execution times
 - **Refined** models using regression on kernels’ execution times history
The **Deque Model (dm) Scheduler**

- Inspired by HEFT popular scheduling algorithm
 - Heterogeneous Earliest Finish Time
- Try to get the best from accelerators **and** CPUs
- Using codelet performance models
 - Kernel calibration on each available computing device
 - **Raw** history model of kernels’ past execution times
 - **Refined** models using regression on kernels’ execution times history
- **Model parameter**
 - **Data size** by default
 - **User-defined** for more complex cases
 - Sparse data structures
 - Iteratives kernels
The Deque Model (dm) Scheduler

- Using codelet performance models
The **Deque Model (dm) Scheduler**

- Using codelet performance models

![Diagram of CPU and GPU cores with submission point](diagram.png)
The Deque Model (dm) Scheduler

- Using codelet performance models
The **Deque Model (dm) Scheduler**

- Using codelet performance models

![Diagram showing CPU Cores and GPUs](image-url)
The **Deque Model (dm) Scheduler**

- Using codelet performance models

![Diagram of Deque Model (dm) Scheduler](image)
The **Deque Model (dm) Scheduler**

- Using codelet performance models

![Diagram of the Deque Model (dm) Scheduler](image)
The **Deque Model (dm)** Scheduler

- Using codelet performance models
The **Deque Model** (dm) Scheduler

- Using codelet performance models
The **Deque Model** (dm) Scheduler

- Using codelet performance models
The Deque Model (dm) Scheduler

- Using codelet performance models
Selecting a Scheduling Policy

- Use the `STARPU_SCHED` environment variable
Selecting a Scheduling Policy

- Use the `STARPU_SCHED` environment variable
- Example 1: selecting the `prio` scheduler

```bash
1 $ export STARPU_SCHED=prio
2 $ my_program
3 ...
```
Selecting a Scheduling Policy

- Use the `STARPU_SCHED` environment variable
- Example 1: selecting the `prio` scheduler
- Example 2: selecting the `dm` scheduler

```
$ export STARPU_SCHED=prio
$ my_program
...

$ export STARPU_SCHED=dm
$ my_program
...
```
Selecting a Scheduling Policy

- Use the `STARPU_SCHED` environment variable
- Example 1: selecting the `prio` scheduler
- Example 2: selecting the `dm` scheduler
- Example 3: resetting to default scheduler `eager`

```bash
$ export STARPU_SCHED=prio
$ my_program
... 

$ export STARPU_SCHED=dm
$ my_program
... 

$ unset STARPU_SCHED
$ my_program
... 
```
Selecting a Scheduling Policy

- Use the `STARPU_SCHED` environment variable
- Example 1: selecting the `prio` scheduler
- Example 2: selecting the `dm` scheduler
- Example 3: resetting to default scheduler `eager`
- No need to recompile the application

```
1 $ export STARPU_SCHED=prio
2 $ my_program
3 ...

1 $ export STARPU_SCHED=dm
2 $ my_program
3 ...

1 $ unset STARPU_SCHED
2 $ my_program
3 ...
```
Showcase with the MAGMA Linear Algebra Library

University of Tennessee, INRIA HIEPACS, INRIA RUNTIME

- QR decomposition on 16 CPUs (AMD) + 4 GPUs (C1060)

Measured increase:
+12 CPUs
~200 GFlops

Expected increase:
+12 CPUs
~150 Gflops
QR kernel properties

<table>
<thead>
<tr>
<th>Kernel</th>
<th>CPU:</th>
<th>GPU:</th>
<th>Speed-up:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGEQRT</td>
<td>9 GFlop/s</td>
<td>30 GFlop/s</td>
<td>3</td>
</tr>
<tr>
<td>STSQRT</td>
<td>12 GFlop/s</td>
<td>37 GFlop/s</td>
<td>3</td>
</tr>
<tr>
<td>SOMQRT</td>
<td>8.5 GFlop/s</td>
<td>227 GFlop/s</td>
<td>27</td>
</tr>
<tr>
<td>SSSMQ</td>
<td>10 GFlop/s</td>
<td>285 GFlop/s</td>
<td>28</td>
</tr>
</tbody>
</table>

Consequences

- Task distribution
 - SGEQRT: 20% Tasks on GPU
 - SSSMQ: 92% tasks on GPU
- Taking advantage of heterogeneity!
 - Only do what you are good for
 - Don’t do what you are not good for
Beyond StarPU’s Predefined Scheduling Policies

Predefined set of popular policies
- No *one size fits all* policy
- Selectable scheduling policy
Beyond StarPU’s Predefined Scheduling Policies

Predefined set of popular policies
- No *one size fits all* policy
- Selectable scheduling policy

Extensible policy set
- You can write your own, specifically tailored policy
- Modular scheduler writing toolbox
Data management
for (j = 0; j < N; j++) {
 POTRF (RW,A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW,A[i][j], R,A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW,A[i][i], R,A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW,A[i][k],
 R,A[i][j], R,A[k][j]);
 }
} starpu_wait_for_all();
The Task-Based Cholesky Decomposition

```
for (j = 0; j < N; j++) {
    POTRF (RW,A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW,A[i][j], R,A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW,A[i][i], R,A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW,A[i][k],
                R,A[i][j], R,A[k][j]);
    }
}
starpu_wait_for_all();
```
The Task-Based Cholesky Decomposition

```c
for (j = 0; j < N; j++) {
    POTRF (RW,A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW,A[i][j], R,A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW,A[i][i], R,A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW,A[i][k],
                R,A[i][j], R,A[k][j]);
    }
}
starpu_wait_for_all();
```
The Task-Based Cholesky Decomposition

for (j = 0; j < N; j++) {
 POTRF (RW,A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW,A[i][j], R,A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW,A[i][i], R,A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW,A[i][k],
 R,A[i][j], R,A[k][j]);
 }
}
starpu_wait_for_all();
The Task-Based Cholesky Decomposition

```c
for (j = 0; j < N; j++) {
    POTRF (RW,A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW,A[i][j], R,A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW,A[i][i], R,A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW,A[i][k],
                  R,A[i][j], R,A[k][j]);
    }
}
starpu_wait_for_all();
```
The Task-Based Cholesky Decomposition

```c
for (j = 0; j < N; j++) {
    POTRF (RW, A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW, A[i][j], R, A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW, A[i][i], R, A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW, A[i][k],
                  R, A[i][j], R, A[k][j]);
    }
}
starpu_wait_for_all();
```
The Task-Based Cholesky Decomposition

```c
for (j = 0; j < N; j++) {
    POTRF (RW,A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW,A[i][j], R,A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW,A[i][i], R,A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW,A[i][k], R,A[i][j], R,A[k][j]);
    }
} starpu_wait_for_all();
```
The Task-Based Cholesky Decomposition

for (j = 0; j < N; j++) {
 POTRF (RW, A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW, A[i][j], R, A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW, A[i][i], R, A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW, A[i][k], R, A[i][j], R, A[k][j]);
 }
} starpu_wait_for_all();
for (j = 0; j < N; j++) {
 POTRF (RW,A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW,A[i][j], R,A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW,A[i][i], R,A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW,A[i][k],
 R,A[i][j], R,A[k][j]);
 }
} starpu_wait_for_all();
The Task-Based Cholesky Decomposition

for (j = 0; j < N; j++) {
 POTRF (RW,A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW,A[i][j], R,A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW,A[i][i], R,A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW,A[i][k],
 R,A[i][j], R,A[k][j]);
 }
} starpu_wait_for_all();
The Task-Based Cholesky Decomposition

```c
for (j = 0; j < N; j++) {
    POTRF (RW, A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW, A[i][j], R, A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW, A[i][i], R, A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW, A[i][k],
                 R, A[i][j], R, A[k][j]);
    }
}
starpu_wait_for_all();
```

The Task-Based Cholesky Decomposition

for (j = 0; j < N; j++) {
 POTRF (RW, A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW, A[i][j], R, A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW, A[i][i], R, A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW, A[i][k], R, A[i][j], R, A[k][j]);
 }
}
starpu_wait_for_all();
The Task-Based Cholesky Decomposition

for (j = 0; j < N; j++) {
 POTRF (RW, A[j][j]);
 for (i = j+1; i < N; i++)
 TRSM (RW, A[i][j], R, A[j][j]);
 for (i = j+1; i < N; i++) {
 SYRK (RW, A[i][i], R, A[i][j]);
 for (k = j+1; k < i; k++)
 GEMM (RW, A[i][k],
 R, A[i][j], R, A[k][j]);
 }
}
starpu_wait_for_all();
Runtime Parallel Execution on a Heterogeneous Node

CPU

GPU0

MEM

CPU

GPU1

Handles dependencies
Handles scheduling (policy)
Handles data consistency (MSI protocol)
Runtime Parallel Execution on a Heterogeneous Node

POTRF
GEMM
TRSM
SYRK
Runtime Parallel Execution on a Heterogeneous Node
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
- Handles data consistency (MSI protocol)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
- Handles data consistency (MSI protocol)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
- Handles data consistency (MSI protocol)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
- Handles data consistency (MSI protocol)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
- Handles data consistency (MSI protocol)
Runtime Parallel Execution on a Heterogeneous Node

- Handles dependencies
- Handles scheduling (policy)
- Handles data consistency (MSI protocol)
Distributed Shared Memory Consistency

MSI Protocol

- M: Modified
- S: Shared
- I: Invalid

Data A

| I | S | S |

Data B

| M | I | I |
Distributed Shared Memory Consistency

MSI Protocol

- M: Modified
- S: Shared
- I: Invalid

\[A = A + B \]

Data A

\[
\begin{array}{ccc}
 I & S & S \\
\end{array}
\]

Data B

\[
\begin{array}{ccc}
 M & I & I \\
\end{array}
\]

A (3)

\[
\begin{array}{ccc}
 S & I & S \\
\end{array}
\]
Distributed Shared Memory Consistency

MSI Protocol

- M: Modified
- S: Shared
- I: Invalid

\[A = A + B \]

Data A

I S S

Data B

M I I

RW (3)

I I M

S I S
Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
- CPU ↔ GPU transfers
- Data transfer cost vs kernel offload benefit
Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
- CPU ↔ GPU transfers
- Data transfer cost vs kernel offload benefit

Transfer cost modelling
- Bus calibration
 - Can differ even for identical devices
 - Platform’s topology
Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
- CPU ↔ GPU transfers
- Data transfer cost vs kernel offload benefit

Transfer cost modelling
- Bus calibration
 - Can differ even for identical devices
 - Platform’s topology

Data-transfer aware scheduling
- Deque Model Data Aware (dmda) scheduling policy variants
- Tunable data transfer cost bias
 - locality
 - vs load balancing
Data Prefetching

Task states

- Submitted
 - Task inserted by the application
- Ready
 - Task’s dependencies resolved
- Scheduled
 - Task queued on a computing unit
- Executing
 - Task running on a computing unit
Data Prefetching

Task states

- **Submitted**
 - Task inserted by the application

- **Ready**
 - Task’s dependencies resolved

- **Scheduled**
 - Task queued on a computing unit

- **Executing**
 - Task running on a computing unit

Anticipate on the **Scheduled** \rightarrow **Executing** transition

- **Prefetch** triggered ASAP after **Scheduled** state
Data Prefetching

Task states
- **Submitted**
 - Task inserted by the application
- **Ready**
 - Task’s dependencies resolved
- **Scheduled**
 - Task queued on a computing unit
- **Executing**
 - Task running on a computing unit

Anticipate on the **Scheduled** \rightarrow **Executing** transition
- Prefetch triggered ASAP after **Scheduled** state
- Prefetch may also be triggered by the application
Data Interfaces

Multiple data types supported

- Vector
- Matrix
- BCSR sparse matrix

```c
int vector[NX];
starpu_data_handle_t handle;
starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
```
Data Interfaces

Multiple data types supported

- Vector
- Matrix
- BCSR sparse matrix

```c
float matrix [NX*NY];
starpu_data_handle_t handle;
starpu_matrix_data_register(&handle, 0, (uintptr_t)matrix, NX, NX, NY, sizeof(matrix[0]));
```
Data Interfaces

Multiple data types supported

- Vector
- Matrix
- BCSR sparse matrix

```c
...  
starpu_data_handle_t handle;

starpu_bcsr_data_register(&handle, 0, NNZ, NROW,
                         (uintptr_t)bcsr_matrix_data,
                         bcsr_matrix_indices, bcsr_matrix_rowptr, first_entry,
                         BLOCK_NROW, BLOCK_NCOL, sizeof(double));
```
Data Interfaces

Multiple data types supported

- Vector
- Matrix
- BCSR sparse matrix
- Extensible data type set
 - You can write your own, specifically tailored data type
Data Interfaces

Multiple data types supported

- Vector
- Matrix
- BCSR sparse matrix
- Extensible data type set
 - You can write your own, specifically tailored data type
- Only the byte size and the shape of data matter, not the actual element type (integer, float, double precision float, ...)
Partitioning

Splitting a piece of managed data into several handles

- Granularity adjustment
- Notion of filter
Partitioning

Splitting a piece of managed data into several handles

- Granularity adjustment
- Notion of filter

Partition

```c
int vector[NX];
starpu_data_handle_t handle;
starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));

/* Partition the vector in NB_PARTS sub-vectors */
struct starpu_data_filter filter = {
    .filter_func = starpu_vector_filter_block,
    .nchildren = NB_PARTS
};
starpu_data_partition(handle, &filter);

/* Data can only be accessed through sub-handles now */
```
Partitioning

Splitting a piece of managed data into several handles

- Granularity adjustment
- Notion of filter

Partition → Use

```c
for ( i = 0; i < starpu_data_get_nb_children( handle ); i ++ ) {
    /* Get subdata number i */
    starpu_data_handle_t sub_handle =
    starpu_data_get_sub_data( handle , 1 , i );

    starpu_task_insert ( &scal_cl ,
                        STARPU_RW , sub_handle ,
                        STARPU_VALUE , &factor , sizeof( factor ),
                        0 );
}
```
Partitioning

Splitting a piece of managed data into several handles
- Granularity adjustment
- Notion of filter

Partition → Use → Unpartition

```c
/* Wait for submitted tasks to complete */
starpu_task_wait_for_all();

/* Unpartition data */
starpu_data_unpartition(handle, &filter);

/* Data can now be accessed through ’handle’ only */
```
Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps
Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps

- Partition planning

```c
int vector[NX];
starpu_data_handle_t handle;
starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));

/* Partition the vector in NB_PARTS sub-vectors */
struct starpu_data_filter filter = {
   .filter_func = starpu_vector_filter_block,
   .nchildren = NB_PARTS
};
starpu_data_handle_t children[NB_PARTS];
starpu_data_partition_plan(handle, &filter, children);

/* Data can only be accessed through sub-handles now */
```
Asynchronous Partitioning

Inserting a partitioning request in the submission flow

Two steps
- Partition planning
- Asynchronous partition enforcement

```c
starpu_task_insert(&scal_cl,
   STARPU_RW, handle,
   STARPU_VALUE, &factor1, sizeof(factor1), 0);
starpu_data_partition_submit(handle, NB_PARTS, children);
for (i=0; i<NB_PARTS; i++) {
   starpu_task_insert(&scal_cl,
      STARPU_RW, children[i],
      STARPU_VALUE, &factor2, sizeof(factor2),
      0);
}
starpu_data_unpartition_submit(handle, NB_PARTS, children, node);
starpu_task_insert(&scal_cl,
   STARPU_RW, handle,
   STARPU_VALUE, &factor3, sizeof(factor3), 0);
```
Reduction

Merge contributions from a set of tasks into a single buffer

- Define neutral element initializer
- Define reduction operator
Reduction

Merge contributions from a set of tasks into a single buffer

- Define neutral element initializer
- Define reduction operator

Define zero

```c
void bzero_cpu(void *descr[], void *cl_arg) {
    double *v_zero = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
    *v_zero = 0.0;
}

struct starpu_codelet bzero_cl = {
    .cpu_funcs = { bzero_cpu, NULL },
    .nbuffers = 1
};
```
Reduction

Merge contributions from a set of tasks into a single buffer

- Define neutral element initializer
- Define reduction operator

Define zero → Define op

```c
void accumulate_cpu(void *descr[], void *cl_arg) {
    double *v_dst = (double *)STARPU_VARIABLE_GET_PTR(descr[0]);
    double *v_src = (double *)STARPU_VARIABLE_GET_PTR(descr[1]);
    *v_dst = *v_dst + *v_src;
}

struct starpu_codelet accumulate_cl = {
    .cpu_funcs = { accumulate_cpu, NULL },
    .nbuffers = 1
};
```
Reduction

Merge contributions from a set of tasks into a single buffer

- Define neutral element initializer
- Define reduction operator

Define zero → Define op → Reduce task contributions

```c
starpu_variable_data_register(&accum_handle, -1, NULL, sizeof(type));

starpu_data_set_reduction_methods(accum_handle,
    &accumulate_cl, &bzero_cl);

for (b = 0; b < nblocks; b++)
    starpu_task_insert(&dot_kernel_cl,
        STARPU_REDUX, accum_handle,
        STARPU_R, starpu_data_get_sub_data(v1, 1, b),
        STARPU_R, starpu_data_get_sub_data(v2, 1, b),
        0);
```
Commutative Write Accesses

- Write accesses enforce sequential consistency by default
 - Too strong for some kind of workloads
 - N-body, unstructured meshes
Commutative Write Accesses

- Write accesses enforce sequential consistency by default
 - Too strong for some kind of workloads
 - N-body, unstructured meshes
Commutative Write Accesses

- Write accesses enforce sequential consistency by default
 - Too strong for some kind of workloads
 - N-body, unstructured meshes

- **Commute**: allows a set of tasks to modify a buffer in any order

```
starpu_task_insert(& cl1 ,
    STARPU_R , handle0 ,
    STARPU_RW , handle ,
    0 ) ;

starpu_task_insert(& cl2 ,
    STARPU_R , handle1 ,
    STARPU_RW | STARPU_COMMUTE , handle ,
    0 ) ;

starpu_task_insert(& cl2 ,
    STARPU_R , handle2 ,
    STARPU_RW | STARPU_COMMUTE , handle ,
    0 ) ;

starpu_task_insert(& cl3 ,
    STARPU_R , handle3 ,
    STARPU_RW , handle ,
    0 ) ;
```
Hands-on Session

Session Part 2: Optimizations

- Training Platform ’poincare’
- Registered attendee should have received login/passwd credentials and connection info
- Reserved computing nodes:
 - gpu nodes: LoadLeveler class ’clgpu’
 - batch script submission: llsubmit <script.sh>
- Web site:

 http://starpu.gforge.inria.fr/tutorials/2016-06-PATC/
4

Debugging / Monitoring
Online vs offline

Online Tools
- Statistics
- Visual debugging

Offline Tools
- Trace-based analysis
Online Profiling Feedback

- Task/worker mapping stats
- Bus stats
- Additional stats (memory, MSI cache)
 - Configure-time options

```
$ export STARPU_PROFILE=1  STARPU_WORKER_STATS=1
$ my_program
...
```
Online Profiling Feedback

- Task/worker mapping stats
- Bus stats
- Additional stats (memory, MSI cache)
 - Configure-time options

```
1 $ export STARPU_PROFILE=1 STARPU_WORKER_STATS=1
2 $ my_program
3 ...
```

```
1 $ export STARPU_PROFILE=1 STARPU_BUS_STATS=1
2 $ my_program
3 ...
```
Online Profiling Feedback

- Task/worker mapping stats
- Bus stats
- Additional stats (memory, MSI cache)
 - Configure-time options

```
1 $ export STARPU_PROFILE=1 STARPU_WORKER_STATS=1
2 $ my_program
3 ...
```

```
1 $ export STARPU_PROFILE=1 STARPU_BUS_STATS=1
2 $ my_program
3 ...
```

```
1 $ $STARPU_DIR/configure  --enable-stats --enable-memory-stats \[... other opts ...]
2 ...
3 ...
```
Offline Trace-Based Feedback

- FxT trace collection
- Trace analysis and display
 - ViTE Gantt
 - Graphviz DAG
 - R plots
Offline Feedback – Trace Collection

- Requires FxT trace toolkit
- Compile-time option to enable trace collection
- Environment variable to enable trace post-processing

```
1. $ $STARPU_DIR/configure --with-fxt [... other opts ...]
2. ...
```
Offline Feedback – Trace Collection

- Requires FxT trace toolkit
- Compile-time option to enable trace collection
- Environment variable to enable trace post-processing

```
1 $ STARPU_DIR/configure --with-fxt [... other opts ...]
2 ...

1 $ export STARPU_GENERATETRACE=1
2 $ my_program
3 ...
```
Offline Feedback – Trace Analysis

Automatically generated

- Dependency graph (DAG)
- Activity diagramm (GANTT)
 - Visualize with ViTE
Offline Feedback – Kernel Model

Display the codelet performance models recorded by StarPU

- Command-line tool starpu_perfmmodel_display
- History-based models
- Regression-based models
Offline Feedback – Kernel Model

Display the codelet performance models recorded by StarPU

- Command-line tool `starpu_perfmodel_display`
- History-based models
- Regression-based models

```bash
$ starpu_perfmodel_display -s starpu_slu_lu_model_11

performance model for cpu0_parallel1_impl0
# hash size mean (us) stddev (us) n
aa6d4ef7 4194304 3.055501e+05 5.804822e+04 48
```
Offline Feedback – Kernel Model Characteristics

Model for codelet starpu_slu.lu_model_11.averell1

- Average cpu_impl_0
- Average cuda_0_impl_0
- Average cuda_1_impl_0

Time (ms) vs Total data size
Offline Feedback – Kernel Model Regression Fitness

Model for codelet non_linear_memset_regression_based

[Graph showing the relationship between time (ms) and total data size, with a curve fitting the data points]

- Profiling cpu0_ncore0_impl0
- Non-Linear Regression cpu0_ncore0_impl0
- Average cpu0_ncore0_impl0
Offline Feedback – Synthetic Kernels’ Behaviour

Data trace

- DPOTRF_TRSM
- DGEHM

Graph showing the relationship between tasks size (ms) and data size in bytes.
Distributed computing
Basic StarPU/MPI Example

Straightforward port of existing MPI code

for (loop = 0; loop < NLOOPS; loop++) {
 if (! (loop == 0 && rank == 0))
 MPI_Recv(&data, prev_rank, ...);

 inc(&data);

 if (! (loop == NLOOPS-1 && rank == size-1))
 MPI_Send(&data, next_rank, ...);
}
Basic StarPU/MPI Example

Straightforward port of existing MPI code

- Asynchronous requests

```c
for (loop = 0; loop < NLOOPS; loop++) {
    if (! (loop == 0 && rank == 0))
        starpu_mpi_irecv_submit(data_handle, prev_rank, ...);

    starpu_mpi_task_insert(&inc_cl, STARPU_RW, data_handle, 0);

    if (! (loop == NLOOPS-1 && rank == size-1))
        starpu_mpi_isend_submit(data_handle, next_rank, ...);
}
starpu_task_wait_for_all();
```
Basic StarPU/MPI Example

Straightforward port of existing MPI code

- Asynchronous requests
- Requests are DAG elements
 - Task may depend on `irecv` completion
 - `isend` may depend on task completion

```c
for (loop = 0; loop < NLOOPS; loop++) {
    if (!(loop == 0 && rank == 0))
        starpu_mpi_irecv_submit(data_handle, prev_rank, ...);

    starpu_mpi_task_insert(&inc_cl, STARPU_RW, data_handle, 0);

    if (!(loop == NLOOPS-1 && rank == size-1))
        starpu_mpi_isend_submit(data_handle, next_rank, ...);
}
starpu_task_wait_for_all();
```
Distributed Support

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow
Distributed Support

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Data ↔ Node Mapping
 - Provided by the application
 - Can be altered dynamically
Distributed Support

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Inter-node dependence management

- Inferred from the task graph edges
- Automatic `Isend` and `Irecv` calls
Distributed Support

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task↔Node Mapping

- Inferred from data location:
 - *Tasks move to data they modify*
- No global scheduling
- No synchronizations

Optimization

- Local DAG pruning
Communication

Nodes infer required transfers

- Task dependencies

Node 1

Node 2
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - *Isend*
 - *Irecv*
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - Isend
 - Irecv
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - `Isend`
 - `Irecv`
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - `Isend`
 - `Irecv`
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - Isend
 - Irecv
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - `Isend`
 - `Irecv`
- Tasks wait for MPI requests

Diagram:
- CPUs
- GPUs
- Memory (MEM)
- NIC

Figure: Network architecture with communication nodes and task dependencies.
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - `Isend`
 - `Irecv`
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - `Isend`
 - `Irecv`
- Tasks wait for MPI requests
Communication

Nodes infer required transfers

- Task dependencies
- Automatic MPI calls
 - Isend
 - Irecv
- Tasks wait for MPI requests
Same Paradigm for Clusters (vs Single Node)

same code

```c
for (j = 0; j < N; j++) {
    POTRF (RW, A[j][j]);
    for (i = j+1; i < N; i++)
        TRSM (RW, A[i][j], R, A[j][j]);
    for (i = j+1; i < N; i++) {
        SYRK (RW, A[i][i], R, A[i][j]);
        for (k = j+1; k < i; k++)
            GEMM (RW, A[i][k],
                  R, A[i][j], R, A[k][j]);
    }
}
task_wait_for_all();
```
Same Paradigm for Clusters (vs Single Node)

Almost same code
- MPI communicator

```c
for (j = 0; j < N; j++) {
    POTRF (RW, A[j][j], MPI_COMM_WORLD);
    for (i = j+1; i < N; i++)
        TRSM (RW, A[i][j], R, A[j][j], MPI_COMM_WORLD);
    for (i = j+1; i < N; i++)
        SYRK (RW, A[i][i], R, A[i][j], MPI_COMM_WORLD);
        for (k = j+1; k < i; k++)
            GEMM (RW, A[i][k],
                  R, A[i][j], R, A[k][j], MPI_COMM_WORLD);
}

task_wait_for_all();
```
Same Paradigm for Clusters (vs Single Node)

Almost same code

- MPI communicator
- Mapping function

```c
int getnode(int i, int j) { return((i%p)*q + j%q); }
```

```c
for (j = 0; j < N; j++) {
    POTRF (RW, A[j][j], MPI_COMM_WORLD, getnode(j,j));
    for (i = j+1; i < N; i++)
        TRSM (RW, A[i][j], R, A[j][j], MPI_COMM_WORLD, getnode(i,j));
    for (i = j+1; i < N; i++)
        SYRK (RW, A[i][i], R, A[i][j], MPI_COMM_WORLD, getnode(i,i));
        for (k = j+1; k < i; k++)
            GEMM (RW, A[i][k],
                 R, A[i][j], R, A[k][j], MPI_COMM_WORLD, getnode(i,k));
}
```

`task_wait_for_all();`
Same Paradigm for Clusters (vs Single Node)

Almost same code

- MPI communicator
- Mapping function

```c
int getnode(int i, int j) { return((i%p)*q + j%q); }
set_rank(A, getnode);

for (j = 0; j < N; j++) {
    POTRF (RW, A[j][j], MPI_COMM_WORLD);
    for (i = j+1; i < N; i++)
        TRSM (RW, A[i][j], R, A[j][j], MPI_COMM_WORLD);
    for (i = j+1; i < N; i++)
        SYRK (RW, A[i][i], R, A[i][j], MPI_COMM_WORLD);
        for (k = j+1; k < i; k++)
            GEMM (RW, A[i][k],  
                R, A[i][j], R, A[k][j], MPI_COMM_WORLD);
    }
}
task_wait_for_all();
```
Hands-on Session

Session Part 3: MPI Support

- Training Platform ’poincare’
- Registered attendee should have received login/passwd credentials and connection info
- Reserved computing nodes:
 - gpu nodes: LoadLeveler class ’clgpu’
 - batch script submission: llsubmit <script.sh>

- Web site:

 http://starpu.gforge.inria.fr/tutorials/2016-06-PATC/
High-level programming
High-Level StarPU Programming

Pragma-Oriented Languages

- OpenMP 4.x Compiler “Klang-OMP”: source-to-source translation of C/C++ into StarPU API calls
Klang-omp OpenMP C/C++ Compiler

High level programming
Klang-omp OpenMP C/C++ Compiler

High level programming
- Translate directives into runtime system API calls
 - **StarPU** Runtime System
 - XKaapi Runtime System (INRIA Team MOAIS)

OpenMP 3.1 – Virtually full support
OpenMP 4.0 – Dependent tasks – Heterogeneous targets (on-going work)

LLVM-based source-to-source compiler
Builds on open source Intel compiler clang-omp

Available on:
- K’Star project website – http://kstar.gforge.inria.fr/
- Team Storm – Olivier Aumage – Mastering StarPU – 6. High-level programming
Klang-omp OpenMP C/C++ Compiler

High level programming

- Translate directives into runtime system API calls
 - StarPU Runtime System
 - XKaapi Runtime System (INRIA Team MOAIS)
- OpenMP 3.1
 - Virtually full support
- OpenMP 4.0
 - Dependent tasks
 - Heterogeneous targets (on-going work)
Klang-omp OpenMP C/C++ Compiler

High level programming

- Translate directives into runtime system API calls
 - StarPU Runtime System
 - XKaapi Runtime System (INRIA Team MOAIS)
- OpenMP 3.1
 - Virtually full support
- OpenMP 4.0
 - Dependent tasks
 - Heterogeneous targets (on-going work)
- LLVM-based source-to-source compiler
- Builds on open source Intel compiler clang-omp

Available on:
- K’Star project website – http://kstar.gforge.inria.fr/
Klang-omp Example: Tasks

```c
int item[N];

void g(int);

void f()
{
    #pragma omp parallel
    {
        #pragma omp single
        {
            int i;
            for (i=0; i<N; i++)
                #pragma omp task untied
                g(item[i]);
        }
    }
}
```
Klang-omp Example: Dependencies

```c
void f()
{
    int a;

    #pragma omp parallel
    #pragma omp single
    {
        #pragma omp task shared(a) depend(out: a)
        foo(&a);

        #pragma omp task shared(a) depend(in: a)
        bar(&a);
    }
}
```
Klang-omp Example: Targets

```c
#pragma omp declare target
extern void g(int *A, int *B, int *C);
#pragma omp end declare target

int A[N], B[N], C[N];

void f()
{
    int a;
    #pragma omp parallel
    #pragma omp master
    #pragma omp target map(to: A, B) map(from: C)
    g(A, B, C);
}
```
Hands-on Session

Short Session Part 4: OpenMP

- Training Platform ’poincare’
- Registered attendee should have received login/passwd credentials and connection info
- Try out the following sequence

  ```
  cd
  source /gpfslocal/pub/training/runtime_june2016/openmp/environment
  cp -r /gpfslocal/pub/training/runtime_june2016/openmp/Cholesky .
  cd Cholesky
  make
  ./cholesky_omp4.starpu
  ```

- Web site:

 http://starpu.gforge.inria.fr/tutorials/2016-06-PATC/
Summary

1. StarPU Internals
2. Scheduling
3. Data management
4. Debugging / Monitoring
5. Distributed computing
6. High-level programming
7. Advanced scheduling
8. Advanced Data Management
9. Advanced Debugging / Monitoring
Advanced scheduling
Advanced Scheduling

Interoperability and composition

- Project H2020 INTERTWinE
- Parallel tasks
- Scheduling contexts
Advanced Scheduling

Interoperability and composition
- Project H2020 INTERTWinE
- Parallel tasks
- Scheduling contexts

Submission-side control
- Look-ahead depth...
- ... vs resource subscription
Interoperability
Interoperability

How to Make Runtimes, Libs Cooperate?
Interoperability

How to Make Runtimes, Libs Cooperate?

- Project INTERTWinE (EU H2020, 3-years, 2015-2018)
 - Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
 - Networking APIs: MPI, GASPI
 - Libraries: Plasma, DPlasma
 - Applications
Interoperability

How to Make Runtimes, Libs Cooperate?

- Project INTERTWinE (EU H2020, 3-years, 2015-2018)
 - Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
 - Networking APIs: MPI, GASPI
 - Libraries: Plasma, DPlasma
 - Applications

- Cooperative resource allocation and management
 - Cores
 - Accelerators
 - Memory
 - Pinned memory segments
 - ...

www.intertwine-project.eu
Multicore CPUs: Parallel Tasks
Multicore CPUs: Parallel Tasks (T. Cojean)

Kernel sweet spots: example with Cholesky factorization kernels
(1x Xeon E5-2680v3 2.5GHz 12 cores)
Multicore CPUs: Parallel Tasks

Rationale

- Run parallel kernels on multiple CPU cores
- Address CPU/GPU computing power imbalance
- Address nested-runtime interoperability
Multicore CPUs: Parallel Tasks

Rationale

- Run parallel kernels on multiple CPU cores
- Address CPU/GPU computing power imbalance
- Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU

- Big kernel for GPU
- Small kernel for a single CPU core
- Run “bigger” kernel on several CPU cores
Multicore CPUs: Parallel Tasks

Rationale

- Run parallel kernels on multiple CPU cores
- Address CPU/GPU computing power imbalance
- Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU

- Big kernel for GPU
- Small kernel for a single CPU core
- Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes

- Interoperability
- Libraries: BLAS, FFT, …
- OpenMP code
Multicore CPUs – Technical details

Two flavors of **parallel tasks**
Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode

- StarPU provides threads on the participating cores
Multicore CPUs – Technical details

Two flavors of **parallel tasks**

Fork-mode
- StarPU provides threads on the participating cores

SPMD-mode
- StarPU launches the task on a single core
- ... and let the task create its own threads
 - Black-box mode
Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
- StarPU provides threads on the participating cores

SPMD-mode
- StarPU launches the task on a single core
- ... and let the task create its own threads
 - Black-box mode

Locality enforcement in NUMA context
- Combined worker threads
Composing Multiple Codes

Rationale
Composing Multiple Codes

Rationale

- Sharing computing resources...
Composing Multiple Codes

Rationale

- Sharing computing resources…
- … among multiple DAGs
Composing Multiple Codes

Rationale

- Sharing computing resources...
- ... among multiple DAGs
- ... simultaneously
Composing Multiple Codes

Rationale
- Sharing computing resources…
- … among multiple DAGs
- … simultaneously

Scheduling Contexts
Composing Multiple Codes

Rationale
- Sharing computing resources...
- ... among multiple DAGs
- ... simultaneously

Scheduling Contexts
- Map DAGs on subsets of computing units
Composing Multiple Codes

Rationale
- Sharing computing resources...
- ... among multiple DAGs
- ... simultaneously

Scheduling Contexts
- Map DAGs on subsets of computing units
- Isolate competing kernels or library calls
 - OpenMP kernel, Intel MKL, etc.
Composing Multiple Codes

Rationale

- Sharing computing resources...
- ... among multiple DAGs
- ... simultaneously

Scheduling Contexts

- Map DAGs on subsets of computing units
- Isolate competing kernels or library calls
 - OpenMP kernel, Intel MKL, etc.
- Select scheduling policy per context
Contexts: Dynamic Resource Management

![Diagram of dynamic resource management contexts]

- Context 1
- Context 2

- CPU
- GPU

Mastering StarPU – Team Storm – Olivier Aumage – 7. Advanced scheduling
Contexts: Dynamic Resource Management
Contexts: Dynamic Resource Management
Contexts: Dynamic Resource Management

[Diagram showing resource management contexts]

Context 1

Context 2

CPU CPU CPU CPU

GPU GPU

Team Storm – Olivier Aumage – Mastering StarPU – 7. Advanced scheduling

67
Submission-Side Matters

Decoupled submission/execution stages
Submission-Side Matters

Decoupled submission/execution stages

Benefits
- Lookahead build-up
 - Anticipation
- Advanced scheduling
 - Long-term planning
- Prefetch
 - Computation/transfer overlap

Risks
- Resource subscription
 - StarPU internal data structures (tasks)
 - Networking buffers
- Processing overhead
 - Algorithm complexity

(Distributed) Scalability
- Strict global sequential task flow
Submission-Side Matters

Decoupled submission/execution stages

Benefits
- Lookahead build-up
 - Anticipation
- Advanced scheduling
 - Long-term planning
- Prefetch
 - Computation/transfer overlap

Risks
- Resource subscription
 - StarPU internal data structures (tasks)
 - Networking buffers
- Processing overhead
 - Algorithm complexity
- (Distributed) Scalability
 - Strict global sequential task flow
Submission-Side Control

Control flow on task submission
Submission-Side Control

Control flow on task submission

Pause/resume task submission on condition

- Max number of *in-flight* tasks
- Others (memory, application phase, etc.)
Submission-Side Control

Control flow on task submission

Pause/resume task submission on condition
- Max number of *in-flight* tasks
- Others (memory, application phase, etc.)

Dead-lock free by design
- Sequential task flow property
Submission-Side Control

Control flow on task submission

Pause/resume task submission on condition
 - Max number of *in-flight* tasks
 - Others (memory, application phase, etc.)

Dead-lock free by design
 - Sequential task flow property

```c
/* API function: */
starpu_task_wait_for_n_submitted(n);
```
Submission-Side Control

Control flow on task submission

Pause/resume task submission on condition
- Max number of *in-flight* tasks
- Others (memory, application phase, etc.)

Dead-lock free by design
- Sequential task flow property

```c
/* API function: */
starpu_task_wait_for_n_submitted(n);
```

```bash
# Environment variables
$ export STARPU_LIMIT_MAX_SUBMITTED_TASKS=10000
$ export STARPU_LIMIT_MIN_SUBMITTED_TASKS=9000
$ my_program
...```
Submission-Side Control

Optimisation on task submission

Distributed sessions
  - Relax global sequential task flow
  - Prune irrelevant tasks
    - Non-local tasks with no dependence edge to/from node

Dead-lock free by design
  - Sequential task flow property
Advanced Data Management
Advanced Data Management
Advanced Data Management

Heterogeneous data layout

- Multiformat support
Advanced Data Management

Heterogeneous data layout
  ■ Multiformat support

Large workloads
  ■ Out-of-core support
Data Layout

Heterogeneous platforms

- Heterogeneous data layout requirements
- Example:
  - Arrays of Structures (AoS), for CPU cache locality
  - vs Structures of Arrays (SoA), for GPU coalesced memory accesses
  - vs Arrays of Structures of Arrays (AoSoA), for MIC/Xeon Phi
  - ... any other data layout

StarPU enables Multiformat kernel implementations
User-provided data layout conversion codelets...
... automatically called upon transfers between devices
Data Layout

Heterogeneous platforms

- Heterogeneous data layout requirements
- Example:
  - Arrays of Structures (AoS), for CPU cache locality
  - vs Structures of Arrays (SoA), for GPU coalesced memory accesses
  - vs Arrays of Structures of Arrays (AoSoA), for MIC/Xeon Phi
  - . . . any other data layout

StarPU enables Multiformat kernel implementations

- User-provided data layout conversion codelets . . .
- . . . automatically called upon transfers between devices
Multiformat

Example

- Declare conversion codelets

```c
/* Conversion codelets */
struct starpu_multiformat_data_interface_ops format_ops = {
 .cuda_elemsize = 2 * sizeof(float),
 .cpu_to_cuda_cl = &cpu_to_cuda_cl,
 .cuda_to_cpu_cl = &cuda_to_cpu_cl,
 .cpu_elemsize = 2 * sizeof(float),
 ...
};

/* Multiformat handle registration */
starpu_multiformat_data_register(handle, 0,
 &array_of_structs, NX, &format_ops);
```
Multiformat

Example
- Declare conversion codelets
- Array of structures for CPU

```c
/* CPU Computation Kernel */

void multiformat_scal_cpu_func(void *buffers[], void *cl_arg) {
 struct point *aos;
 unsigned int n;

 aos = STARPU_MULTIFORMAT_GET_CPU_PTR(buffers[0]);
 n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
 ...
}
```
Multiformat

Example

- Declare conversion codelets
- Array of structures for CPU
- Structure of arrays for NVidia CUDA GPU

```c
/* GPU Computation Kernel */

extern "C" void
multiformat_scal_cuda_func(void *buffers[], void *cl_arg) {
 unsigned int n;
 struct struct_of_arrays *soa;

 soa = (struct struct_of_arrays *)
 STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);
 n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);

 ...
}
```
Large workloads

Using disks as StarPU memory nodes

- Out-of-Core
Large workloads

Using disks as StarPU memory nodes

- **Out-of-Core**
- Enable StarPU to evict temporarily unused data to disk
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer
- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported
- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer
- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported
- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer
- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported
- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
Out-of-Core

Integration with general StarPU’s memory management layer

- StarPU data handles
- Task dependencies
  - Data reloaded automatically

Multiple disk drivers supported

- Legacy stdio/unistd methods
- Google’s LevelDB (key/value database library)
9

Advanced Debugging / Monitoring
Computing the Theoretical Lower Bound... 

... on Execution Time

- Have realistic expectations from the scheduler
- Identify issues
  - Abnormal overhead
  - Bugs
Computing the Theoretical Lower Bound...

... on Execution Time

- Have realistic expectations from the scheduler
- Identify issues
  - Abnormal overhead
  - Bugs

```c
int ret = starpu_init(NULL);
...
starpu_task_insert(...);
starpu_task_insert(...);
...
starpu_task_wait_for_all();
...
```
Computing the Theoretical Lower Bound…

… on Execution Time

- Have realistic expectations from the scheduler
- Identify issues
  - Abnormal overhead
  - Bugs

```c
int ret = starpu_init(NULL);
 ...
starpu_bound_start();
starpu_task_insert(...);
starpu_task_insert(...);
 ...
starpu_task_wait_for_all();
starpu_bound_stop();
 ...
```
Computing the Theoretical Lower Bound…

… on Execution Time

- Have realistic expectations from the scheduler
- Identify issues
  - Abnormal overhead
  - Bugs

```c
int ret = starpu_init(NULL);
...
starpu_bound_start();
starpu_task_insert(...);
starpu_task_insert(...);
...
starpu_task_wait_for_all();
starpu_bound_stop();
starpu_bound_print_lp();
...
```
Computing the Theoretical Lower Bound…

… on Execution Time

- Have realistic expectations from the scheduler
- Identify issues
  - Abnormal overhead
  - Bugs
- Generate a Linear Programming problem…
  - … to be solved externally (lp_solve, etc.)

```c
int ret = starpu_init(NULL);
...
starpu_bound_start();
starpu_task_insert(...);
starpu_task_insert(...);
...
starpu_task_wait_for_all();
starpu_bound_stop();
starpu_bound_print_lp();
...
```
Simulation with SimGrid

Scheduling without executing kernels

- Requires the SimGrid simulation environment
- Enables simulating large-scale scenarios
  - Large data sets
  - Large simulated hardware platform
- Relies on real performance models...
- ...collected by StarPU on a real machine
- Enables fast experiments when designing application algorithms
- Enables fast experiments when designing scheduling algorithms

```
$ $STARPU_DIR/configure --enable-simgrid [... other opts ...]
...
```
Simulation with SimGrid

Scheduling without executing kernels

- Requires the SimGrid simulation environment
- Enables simulating large-scale scenarios
  - Large data sets
  - Large simulated hardware platform
- Relies on real performance models...
- ...collected by StarPU on a real machine
- Enables fast experiments when designing application algorithms
- Enables fast experiments when designing scheduling algorithms

```
1 $ $STARPU_DIR/configure --enable-simgrid [... other opts ...]
2 ...
```
Simulation with SimGrid

Scheduling **without executing kernels**

- Requires the SimGrid simulation environment
- Enables simulating large-scale scenarios
  - Large data sets
  - Large simulated hardware platform
- Relies on **real** performance models...
- ...collected by StarPU on a real machine
- Enables fast experiments when designing application algorithms
- Enables fast experiments when designing scheduling algorithms

```
1 $ $STARPU_DIR/configure --enable=simgrid [... other opts ...]
2 ...
```
Simulation accuracy with SimGrid

Histograms for state distribution

- chol_model_11
- chol_model_21
- chol_model_22

Count

Time [ms]
Simulation with StarPU/SimGrid (L. Stanisic)

![Graphs showing performance comparison between SimGrid and Native conditions for different hardware configurations.](image-url)

- Hannibal: 3 QuadroFX5800
- Attila: 3 TeslaC2050
- Mirage: 3 TeslaM2070
- Conan: 3 TeslaM2075

- Frogkepler: 2 K20
- Pilipili: 2 K40
- Idgraf: 8 TeslaC2050

**Matrix dimension**

**GFLOPS**

**Experimental Condition**

- SimGrid
- Native
Simulation with StarPU/SimGrid (L. Stanisic)

Comparing Native and SimGrid executions

Kernel:
- L2L
- L2P
- M2L
- M2L-out
- M2M
- P2M
- P2P
- P2P-out

Resource

Time [ms]

0 10000 20000 30000 40000
Conclusion

StarPU
A Unified Runtime System for Heterogeneous Multicore Architectures
Conclusion

StarPU
A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: **Async. Task Submission + Inferred Dependencies**
Conclusion

StarPU
A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model:  Async. Task Submission + Inferred Dependencies
Execution Model:  Scheduler + Distributed Shared Memory
Conclusion

StarPU
A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: **Async. Task Submission + Inferred Dependencies**
Execution Model: **Scheduler + Distributed Shared Memory**

The key combination for:

- Portability
- Control
- Adaptiveness
- Optimization

Portability of Performance
Summary

1. StarPU Internals
2. Scheduling
3. Data management
4. Debugging / Monitoring
5. Distributed computing
6. High-level programming
7. Advanced scheduling
8. Advanced Data Management
9. Advanced Debugging / Monitoring
Partnerships

- Industrial Partnerships
  - Airbus Group, CEA, IMACS
- EU H2020 INTERTWinE (France, UK, Spain, Germany, Sweden)
  - Runtime system interoperability
- MORSE Associated Team: INRIA/UTK
  - Linear Algebra
- DGA RAPID Hi-BOX
  - FMM toolbox on top of StarPU
- ANR SOLHAR
  - Sparse Linear Algebra
- ANR SONGS
  - SimGrid simulation
- INRIA IPL C2S@Exa
  - Federation/integration of INRIA’s HPC Software
- INRIA ADT K’Star
  - OpenMP source-to-source compiler
StarPU Session Slides and Feedback

PDF Slides at the end of the page:
http://starpu.gforge.inria.fr/tutorials/2016-06-PATC/

---

H2020 INTERTWinE Project: www.intertwine.eu

INTERTWinE Feedback Form on StarPU Session:
https://www.surveymonkey.co.uk/r/NJ3MGKW

Voluntarily, anonymous form. (approx. 2 min to complete)
End of Part. 2 — Mastering StarPU

StarPU

Web Site: http://starpu.gforge.inria.fr/
LGPL License
Open to external contributors